論文の概要: k-LLMmeans: Scalable, Stable, and Interpretable Text Clustering via LLM-based Centroids
- arxiv url: http://arxiv.org/abs/2502.09667v2
- Date: Fri, 09 May 2025 15:39:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-12 14:47:46.91991
- Title: k-LLMmeans: Scalable, Stable, and Interpretable Text Clustering via LLM-based Centroids
- Title(参考訳): k-LLMmeans: LLMベースのCentroidによるスケーラブル、安定、解釈可能なテキストクラスタリング
- Authors: Jairo Diaz-Rodriguez,
- Abstract要約: k-LLMmeansはテキストクラスタリングのためのk-meansアルゴリズムの新しい修正である。
k-LLMmeansはk-meansや他の伝統的なベースラインよりも一貫して優れていることを示す。
そこで本研究では,StackExchangeをベースとして,テキストストリームクラスタリング手法の評価を行うベンチマークデータセットを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce k-LLMmeans, a novel modification of the k-means algorithm for text clustering that leverages LLM-generated summaries as cluster centroids, capturing semantic nuances often missed by purely numerical averages. This design preserves the core optimization properties of k-means while enhancing semantic interpretability and avoiding the scalability and instability issues typical of modern LLM-based clustering. Unlike existing methods, our approach does not increase LLM usage with dataset size and produces transparent intermediate outputs. We further extend it with a mini-batch variant for efficient, real-time clustering of streaming text. Extensive experiments across multiple datasets, embeddings, and LLMs show that k-LLMmeans consistently outperforms k-means and other traditional baselines and achieves results comparable to state-of-the-art LLM-based clustering, with a fraction of the LLM calls. Finally, we present a case study on sequential text streams and introduce a new benchmark dataset constructed from StackExchange to evaluate text-stream clustering methods.
- Abstract(参考訳): k-LLMmeansはテキストクラスタリングのためのk-meansアルゴリズムを改良したもので、LLM生成した要約をクラスタセンタロイドとして利用し、純粋に数値的な平均で欠落するセマンティックニュアンスをキャプチャする。
この設計は、k平均のコア最適化特性を保ちつつ、意味論的解釈性を向上し、現代のLLMクラスタリングに典型的なスケーラビリティと不安定性の問題を回避する。
既存の手法とは異なり、我々の手法はデータセットサイズでLLMの使用量を増大させず、透過的な中間出力を生成する。
さらに、ストリーミングテキストの効率的なリアルタイムクラスタリングのために、ミニバッチで拡張します。
複数のデータセット、埋め込み、LLMにわたる大規模な実験は、k-LLMmeansがk-meansや他の伝統的なベースラインを一貫して上回り、LLM呼び出しのごく一部で最先端のLLMベースのクラスタリングに匹敵する結果が得られることを示している。
最後に、シーケンシャルなテキストストリームに関するケーススタディと、StackExchangeから構築された新しいベンチマークデータセットを導入し、テキストストリームクラスタリング手法を評価する。
関連論文リスト
- An Improved Deep Learning Model for Word Embeddings Based Clustering for Large Text Datasets [0.0]
単語の埋め込みを微調整することで,大規模テキストデータセットのクラスタリングを改良する手法を提案する。
シルエットスコア、純度、調整されたランドインデックス(ARI)などのクラスタリング指標の大幅な改善を示す。
提案手法は,大規模テキストマイニング作業における意味的理解と統計的堅牢性のギャップを埋めるのに役立つ。
論文 参考訳(メタデータ) (2025-02-22T08:28:41Z) - Information-Theoretic Generative Clustering of Documents [24.56214029342293]
文書の集合をクラスタリングするための生成クラスタリング(GC)を$mathrmX$で提示する。
大規模言語モデル(LLM)は確率分布を提供するため、2つの文書間の類似性を厳密に定義することができる。
我々はGCが最先端のパフォーマンスを達成し、従来のクラスタリング手法よりも大きなマージンで優れていることを示す。
論文 参考訳(メタデータ) (2024-12-18T06:21:21Z) - Text Clustering as Classification with LLMs [6.030435811868953]
本研究では,大規模言語モデル(LLM)の文脈内学習能力を効果的に活用する,テキストクラスタリングのための新しいフレームワークを提案する。
そこで本研究では,テキストクラスタリングをLLMによる分類タスクに変換することを提案する。
我々のフレームワークは、最先端のクラスタリング手法に匹敵する、あるいは優れた性能を達成できることが実験的に証明されている。
論文 参考訳(メタデータ) (2024-09-30T16:57:34Z) - Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - Text Clustering with Large Language Model Embeddings [0.0]
テキストクラスタリングの有効性は、テキスト埋め込みとクラスタリングアルゴリズムの選択に大きく依存する。
大規模言語モデル(LLM)の最近の進歩は、このタスクを強化する可能性を秘めている。
LLM埋め込みは構造化言語の微妙さを捉えるのに優れていることを示す。
論文 参考訳(メタデータ) (2024-03-22T11:08:48Z) - Large Language Models Enable Few-Shot Clustering [88.06276828752553]
大規模言語モデルは、クエリ効率が良く、数発のセミ教師付きテキストクラスタリングを可能にするために、専門家のガイダンスを増幅できることを示す。
最初の2つのステージにLSMを組み込むことで、クラスタの品質が大幅に向上することがわかった。
論文 参考訳(メタデータ) (2023-07-02T09:17:11Z) - Revisiting Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [69.15976031704687]
IAC (Instance-Adaptive Clustering, インスタンス適応クラスタリング) を提案する。
IACは$ MathcalO(n, textpolylog(n) $の計算複雑性を維持しており、大規模問題に対してスケーラブルで実用的なものである。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - CEIL: A General Classification-Enhanced Iterative Learning Framework for
Text Clustering [16.08402937918212]
短文クラスタリングのための新しい分類強化反復学習フレームワークを提案する。
各イテレーションにおいて、まず最初に言語モデルを採用して、初期テキスト表現を検索する。
厳密なデータフィルタリングと集約プロセスの後、クリーンなカテゴリラベルを持つサンプルが検索され、監督情報として機能する。
最後に、表現能力が改善された更新言語モデルを使用して、次のイテレーションでクラスタリングを強化する。
論文 参考訳(メタデータ) (2023-04-20T14:04:31Z) - A Proposition-Level Clustering Approach for Multi-Document Summarization [82.4616498914049]
クラスタリングアプローチを再検討し、より正確な情報アライメントの提案をグループ化します。
提案手法は,有意な命題を検出し,それらをパラフラスティックなクラスタに分類し,その命題を融合して各クラスタの代表文を生成する。
DUC 2004 とTAC 2011 データセットでは,従来の最先端 MDS 法よりも要約法が優れている。
論文 参考訳(メタデータ) (2021-12-16T10:34:22Z) - You Never Cluster Alone [150.94921340034688]
我々は、主流のコントラスト学習パラダイムをクラスタレベルのスキームに拡張し、同じクラスタに属するすべてのデータが統一された表現に寄与する。
分類変数の集合をクラスタ化代入信頼度として定義し、インスタンスレベルの学習トラックとクラスタレベルの学習トラックを関連付ける。
代入変数を再パラメータ化することで、TCCはエンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-06-03T14:59:59Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - LSD-C: Linearly Separable Deep Clusters [145.89790963544314]
ラベルなしデータセットのクラスタを識別する新しい手法であるLSD-Cを提案する。
本手法は,最近の半教師付き学習の実践からインスピレーションを得て,クラスタリングアルゴリズムと自己教師付き事前学習と強力なデータ拡張を組み合わせることを提案する。
CIFAR 10/100, STL 10, MNIST, および文書分類データセットReuters 10Kなど, 一般的な公開画像ベンチマークにおいて, 当社のアプローチが競合より大幅に優れていたことを示す。
論文 参考訳(メタデータ) (2020-06-17T17:58:10Z) - Enhancement of Short Text Clustering by Iterative Classification [0.0]
反復分類は、外乱のないクラスターを得るために外乱除去を適用する。
クラスタ分布に基づいて非アウトレーヤを用いて分類アルゴリズムを訓練する。
これを何回か繰り返すことで、より改良されたテキストのクラスタリングが得られる。
論文 参考訳(メタデータ) (2020-01-31T02:12:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。