論文の概要: Meta-INR: Efficient Encoding of Volumetric Data via Meta-Learning Implicit Neural Representation
- arxiv url: http://arxiv.org/abs/2502.09669v1
- Date: Wed, 12 Feb 2025 21:54:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 14:47:01.267730
- Title: Meta-INR: Efficient Encoding of Volumetric Data via Meta-Learning Implicit Neural Representation
- Title(参考訳): Meta-INR:メタラーニング命令型ニューラル表現によるボリュームデータの効率的な符号化
- Authors: Maizhe Yang, Kaiyuan Tang, Chaoli Wang,
- Abstract要約: Inlicit Neural representation (INR)は、ボリュームデータを符号化するための有望なソリューションとして登場した。
メタ学習アルゴリズムを用いて,データセットの部分的な観察から初期INRパラメータを学習するための事前学習戦略であるMeta-INRを提案する。
我々は,Meta-INRが,様々なデータセットにまたがる類似ボリュームデータをエンコードする上で有効な,高品質な一般化可能な特徴を効果的に抽出できることを実証した。
- 参考スコア(独自算出の注目度): 4.782024723712711
- License:
- Abstract: Implicit neural representation (INR) has emerged as a promising solution for encoding volumetric data, offering continuous representations and seamless compatibility with the volume rendering pipeline. However, optimizing an INR network from randomly initialized parameters for each new volume is computationally inefficient, especially for large-scale time-varying or ensemble volumetric datasets where volumes share similar structural patterns but require independent training. To close this gap, we propose Meta-INR, a pretraining strategy adapted from meta-learning algorithms to learn initial INR parameters from partial observation of a volumetric dataset. Compared to training an INR from scratch, the learned initial parameters provide a strong prior that enhances INR generalizability, allowing significantly faster convergence with just a few gradient updates when adapting to a new volume and better interpretability when analyzing the parameters of the adapted INRs. We demonstrate that Meta-INR can effectively extract high-quality generalizable features that help encode unseen similar volume data across diverse datasets. Furthermore, we highlight its utility in tasks such as simulation parameter analysis and representative timestep selection. The code is available at https://github.com/spacefarers/MetaINR.
- Abstract(参考訳): Implicit Neural representation (INR)は、ボリュームデータをエンコードするための有望なソリューションとして登場し、連続的な表現とボリュームレンダリングパイプラインとのシームレスな互換性を提供する。
しかし、新しいボリューム毎にランダムに初期化パラメータからINRネットワークを最適化することは、特にボリュームが類似した構造パターンを共有しながら独立したトレーニングを必要とする大規模時間変化またはアンサンブルボリュームデータセットに対して、計算的に非効率である。
このギャップを埋めるため、メタ学習アルゴリズムに適応した事前学習戦略であるMeta-INRを提案し、ボリュームデータセットの部分的な観測から初期INRパラメータを学習する。
学習された初期パラメータは、スクラッチからINRをトレーニングするのと比較して、INRの一般化性を高める強力な事前情報を提供する。
我々は,Meta-INRが,様々なデータセットにまたがる類似ボリュームデータをエンコードする上で有効な,高品質な一般化可能な特徴を効果的に抽出できることを実証した。
さらに,シミュレーションパラメータ解析や代表的な時間ステップ選択などのタスクにおいて,その有用性を強調した。
コードはhttps://github.com/spacefarers/MetaINR.comで公開されている。
関連論文リスト
- Attention Beats Linear for Fast Implicit Neural Representation Generation [13.203243059083533]
本稿では,局所的注意層(LAL)と大域的表現ベクトルからなる注意型局所INR(ANR)を提案する。
インスタンス固有の表現とインスタンスに依存しないANRパラメータにより、ターゲット信号は連続関数として十分に再構成される。
論文 参考訳(メタデータ) (2024-07-22T03:52:18Z) - Low-Rank Representations Meets Deep Unfolding: A Generalized and
Interpretable Network for Hyperspectral Anomaly Detection [41.50904949744355]
現在のハイパースペクトル異常検出(HAD)ベンチマークデータセットは、低解像度、単純なバックグラウンド、検出データの小さなサイズに悩まされている。
これらの要因は、ロバスト性の観点からよく知られた低ランク表現(LRR)モデルの性能も制限する。
我々は、複雑なシナリオにおけるHADアルゴリズムの堅牢性を改善するために、新しいHADベンチマークデータセットであるAIR-HADを構築した。
論文 参考訳(メタデータ) (2024-02-23T14:15:58Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
ニューラルネットワークのための新しいヘテロジニアスメモリ拡張手法を提案する。
学習可能なメモリトークンをアテンション機構付きで導入することにより、膨大な計算オーバーヘッドを伴わずに性能を効果的に向上させることができる。
In-distriion (ID) と Out-of-distriion (OOD) の両方の条件下での様々な画像およびグラフベースのタスクに対するアプローチを示す。
論文 参考訳(メタデータ) (2023-10-17T01:05:28Z) - Modality-Agnostic Variational Compression of Implicit Neural
Representations [96.35492043867104]
Inlicit Neural Representation (INR) としてパラメータ化されたデータの関数的ビューに基づくモーダリティ非依存型ニューラル圧縮アルゴリズムを提案する。
潜時符号化と疎性の間のギャップを埋めて、ソフトゲーティング機構に非直線的にマッピングされたコンパクト潜時表現を得る。
このような潜在表現のデータセットを得た後、ニューラル圧縮を用いてモーダリティ非依存空間におけるレート/歪みトレードオフを直接最適化する。
論文 参考訳(メタデータ) (2023-01-23T15:22:42Z) - Bayesian Neural Network Language Modeling for Speech Recognition [59.681758762712754]
長期記憶リカレントニューラルネットワーク(LSTM-RNN)とトランスフォーマーで表される最先端のニューラルネットワーク言語モデル(NNLM)は非常に複雑になりつつある。
本稿では,LSTM-RNN と Transformer LM の基盤となる不確実性を考慮するために,ベイズ学習フレームワークの全体構造を提案する。
論文 参考訳(メタデータ) (2022-08-28T17:50:19Z) - Transformers as Meta-Learners for Implicit Neural Representations [10.673855995948736]
Inlicit Neural Representations (INRs) は近年、離散表現よりもその利点を示してきた。
InRのハイパーネットとしてTransformerを利用する定式化を提案し,INRの重みの集合を直接構築する。
本稿では,3次元オブジェクトに対する2次元画像回帰とビュー合成を含む,異なるタスクや領域でINRを構築するための手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-08-04T17:54:38Z) - Parameter estimation for WMTI-Watson model of white matter using
encoder-decoder recurrent neural network [0.0]
本研究では,ラットおよびヒト脳のデータセット上でのNLLS,RNN法および多層パーセプトロン(MLP)の性能を評価する。
提案手法は,NLLSよりも計算時間を大幅に短縮できるという利点を示した。
論文 参考訳(メタデータ) (2022-03-01T16:33:15Z) - Towards Lightweight Controllable Audio Synthesis with Conditional
Implicit Neural Representations [10.484851004093919]
入射神経表現(英語: Implicit Neural representations、INR)は、低次元関数を近似するニューラルネットワークである。
本研究では、音声合成のための生成フレームワークの軽量バックボーンとして、CINR(Conditional Implicit Neural Representations)の可能性に光を当てた。
論文 参考訳(メタデータ) (2021-11-14T13:36:18Z) - Meta-Learning Sparse Implicit Neural Representations [69.15490627853629]
入射神経表現は、一般的な信号を表す新しい道である。
現在のアプローチは、多数の信号やデータセットに対してスケールすることが難しい。
メタ学習型スパースニューラル表現は,高密度メタ学習モデルよりもはるかに少ない損失が得られることを示す。
論文 参考訳(メタデータ) (2021-10-27T18:02:53Z) - SreaMRAK a Streaming Multi-Resolution Adaptive Kernel Algorithm [60.61943386819384]
既存のKRRの実装では、すべてのデータがメインメモリに格納される必要がある。
KRRのストリーミング版であるStreaMRAKを提案する。
本稿では,2つの合成問題と2重振り子の軌道予測について紹介する。
論文 参考訳(メタデータ) (2021-08-23T21:03:09Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
我々は,真の配列多様体行列の変異チャネルデータから学習した畳み込みニューラルネットワーク(CNN)を導入する。
我々は低SNR体制でCNNを訓練し、すべてのSNRでDoAを予測する。
私たちの堅牢なソリューションは、ワイヤレスアレイセンサーから音響マイクロフォンやソナーまで、いくつかの分野に適用できます。
論文 参考訳(メタデータ) (2020-11-17T12:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。