Are Smarter LLMs Safer? Exploring Safety-Reasoning Trade-offs in Prompting and Fine-Tuning
- URL: http://arxiv.org/abs/2502.09673v1
- Date: Thu, 13 Feb 2025 06:37:28 GMT
- Title: Are Smarter LLMs Safer? Exploring Safety-Reasoning Trade-offs in Prompting and Fine-Tuning
- Authors: Ang Li, Yichuan Mo, Mingjie Li, Yifei Wang, Yisen Wang,
- Abstract summary: Large Language Models (LLMs) have demonstrated remarkable success across various NLP benchmarks.
In this work, we investigate the interplay between reasoning and safety in LLMs.
We highlight the latent safety risks that arise as reasoning capabilities improve, shedding light on previously overlooked vulnerabilities.
- Score: 40.55486479495965
- License:
- Abstract: Large Language Models (LLMs) have demonstrated remarkable success across various NLP benchmarks. However, excelling in complex tasks that require nuanced reasoning and precise decision-making demands more than raw language proficiency--LLMs must reason, i.e., think logically, draw from past experiences, and synthesize information to reach conclusions and take action. To enhance reasoning abilities, approaches such as prompting and fine-tuning have been widely explored. While these methods have led to clear improvements in reasoning, their impact on LLM safety remains less understood. In this work, we investigate the interplay between reasoning and safety in LLMs. We highlight the latent safety risks that arise as reasoning capabilities improve, shedding light on previously overlooked vulnerabilities. At the same time, we explore how reasoning itself can be leveraged to enhance safety, uncovering potential mitigation strategies. By examining both the risks and opportunities in reasoning-driven LLM safety, our study provides valuable insights for developing models that are not only more capable but also more trustworthy in real-world deployments.
Related papers
- Reasoning-to-Defend: Safety-Aware Reasoning Can Defend Large Language Models from Jailbreaking [26.812138599896997]
We propose Reasoning-to-Defend (R2D), a novel training paradigm that integrates safety reflections of queries and responses into LLM's generation process.
R2D effectively mitigates various attacks and improves overall safety, highlighting the substantial potential of safety-aware reasoning in strengthening LLMs' robustness against jailbreaks.
arXiv Detail & Related papers (2025-02-18T15:48:46Z) - Internal Activation as the Polar Star for Steering Unsafe LLM Behavior [50.463399903987245]
We introduce SafeSwitch, a framework that dynamically regulates unsafe outputs by monitoring and utilizing the model's internal states.
Our empirical results show that SafeSwitch reduces harmful outputs by over 80% on safety benchmarks while maintaining strong utility.
arXiv Detail & Related papers (2025-02-03T04:23:33Z) - Trust & Safety of LLMs and LLMs in Trust & Safety [0.0]
This systematic review investigates the current research landscape on trust and safety in Large Language Models.
We delve into the complexities of utilizing LLMs in domains where maintaining trust and safety is paramount.
This review provides insights on best practices for using LLMs in Trust and Safety, and explores emerging risks such as prompt injection and jailbreak attacks.
arXiv Detail & Related papers (2024-12-03T03:10:12Z) - Current state of LLM Risks and AI Guardrails [0.0]
Large language models (LLMs) have become increasingly sophisticated, leading to widespread deployment in sensitive applications where safety and reliability are paramount.
These risks necessitate the development of "guardrails" to align LLMs with desired behaviors and mitigate potential harm.
This work explores the risks associated with deploying LLMs and evaluates current approaches to implementing guardrails and model alignment techniques.
arXiv Detail & Related papers (2024-06-16T22:04:10Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
Open-sourcing of large language models (LLMs) accelerates application development, innovation, and scientific progress.
Our investigation exposes a critical oversight in this belief.
By deploying carefully designed demonstrations, our research demonstrates that base LLMs could effectively interpret and execute malicious instructions.
arXiv Detail & Related papers (2024-04-16T13:22:54Z) - Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science [65.77763092833348]
Intelligent agents powered by large language models (LLMs) have demonstrated substantial promise in autonomously conducting experiments and facilitating scientific discoveries across various disciplines.
While their capabilities are promising, these agents also introduce novel vulnerabilities that demand careful consideration for safety.
This paper conducts a thorough examination of vulnerabilities in LLM-based agents within scientific domains, shedding light on potential risks associated with their misuse and emphasizing the need for safety measures.
arXiv Detail & Related papers (2024-02-06T18:54:07Z) - The Art of Defending: A Systematic Evaluation and Analysis of LLM
Defense Strategies on Safety and Over-Defensiveness [56.174255970895466]
Large Language Models (LLMs) play an increasingly pivotal role in natural language processing applications.
This paper presents Safety and Over-Defensiveness Evaluation (SODE) benchmark.
arXiv Detail & Related papers (2023-12-30T17:37:06Z) - Safety Assessment of Chinese Large Language Models [51.83369778259149]
Large language models (LLMs) may generate insulting and discriminatory content, reflect incorrect social values, and may be used for malicious purposes.
To promote the deployment of safe, responsible, and ethical AI, we release SafetyPrompts including 100k augmented prompts and responses by LLMs.
arXiv Detail & Related papers (2023-04-20T16:27:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.