Lifespan tree of brain anatomy: diagnostic values for motor and cognitive neurodegenerative diseases
- URL: http://arxiv.org/abs/2502.09682v1
- Date: Thu, 13 Feb 2025 13:29:05 GMT
- Title: Lifespan tree of brain anatomy: diagnostic values for motor and cognitive neurodegenerative diseases
- Authors: Pierrick Coupé, Boris Mansencal, José V. Manjón, Patrice Péran, Wassilios G. Meissner, Thomas Tourdias, Vincent Planche,
- Abstract summary: We develop a novel machine learning framework, named lifespan tree of brain anatomy, dedicated to the differential diagnosis between multiple diseases simultaneously.<n>Lifespan tree holds promise as a valuable tool for differential diagnostic in relevant clinical conditions.
- Score: 0.41532136084884347
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The differential diagnosis of neurodegenerative diseases, characterized by overlapping symptoms, may be challenging. Brain imaging coupled with artificial intelligence has been previously proposed for diagnostic support, but most of these methods have been trained to discriminate only isolated diseases from controls. Here, we develop a novel machine learning framework, named lifespan tree of brain anatomy, dedicated to the differential diagnosis between multiple diseases simultaneously. It integrates the modeling of volume changes for 124 brain structures during the lifespan with non-linear dimensionality reduction and synthetic sampling techniques to create easily interpretable representations of brain anatomy over the course of disease progression. As clinically relevant proof- of-concept applications, we constructed a cognitive lifespan tree of brain anatomy for the differential diagnosis of six causes of neurodegenerative dementia and a motor lifespan tree of brain anatomy for the differential diagnosis of four causes of parkinsonism using 37594 MRI as a training dataset. This original approach enhanced significantly the efficiency of differential diagnosis in the external validation cohort of 1754 cases, outperforming existing state-of-the art machine learning techniques. Lifespan tree holds promise as a valuable tool for differential diagnostic in relevant clinical conditions, especially for diseases still lacking effective biological markers.
Related papers
- The order in speech disorder: a scoping review of state of the art machine learning methods for clinical speech classification [3.4973270688542626]
Speech patterns have emerged as potential diagnostic markers for conditions with varying etiologies.
High diagnostic accuracies were consistently observed for laryngeal disorders, dysarthria, and changes related to speech in Parkinsons disease.
Disorders like depression, schizophrenia, mild cognitive impairment and Alzheimers dementia also demonstrated high accuracies.
arXiv Detail & Related papers (2025-03-03T11:33:02Z) - Deep Learning for Early Alzheimer Disease Detection with MRI Scans [1.9806397201363817]
Alzheimer's disease requires diagnosis by a detailed assessment of MRI scans and neuropsychological tests of the patients.<n>This project compares existing deep learning models in the pursuit of enhancing the accuracy and efficiency of AD diagnosis.<n>We perform rigorous evaluation to determine strengths and weaknesses for each model by considering sensitivity, specificity, and computational efficiency.
arXiv Detail & Related papers (2025-01-17T07:30:16Z) - Explainable Brain Age Gap Prediction in Neurodegenerative Conditions using coVariance Neural Networks [94.06526659234756]
Black-box machine learning approaches to brain age gap prediction have limited practical utility.<n>We apply the VNN-based approach to study brain age gap using cortical thickness features for various prevalent neurodegenerative conditions.<n>Our results reveal distinct anatomic patterns for brain age gap in Alzheimer's disease, frontotemporal dementia, and atypical Parkinsonian disorders.
arXiv Detail & Related papers (2025-01-02T19:37:09Z) - Towards the Discovery of Down Syndrome Brain Biomarkers Using Generative Models [0.0]
We evaluate state-of-the-art brain anomaly detection models based on Variational Autoencoders and Diffusion Models.
Our findings indicate that some models effectively detect the primary alterations characterizing Down syndrome's brain anatomy.
arXiv Detail & Related papers (2024-09-20T12:01:15Z) - Multi-Resolution Graph Analysis of Dynamic Brain Network for Classification of Alzheimer's Disease and Mild Cognitive Impairment [0.0]
Alzheimer's disease (AD) is a neurodegenerative disorder marked by memory loss and cognitive decline.<n>Traditional methods, such as Pearson's correlation, have been used to calculate association matrices.<n>We introduce a novel method that integrates discrete wavelet transform (DWT) and graph theory to model the dynamic behavior of brain networks.
arXiv Detail & Related papers (2024-09-06T07:26:14Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Brain Diffuser: An End-to-End Brain Image to Brain Network Pipeline [54.93591298333767]
Brain diffuser is a diffusion based end-to-end brain network generative model.
It exploits more structural connectivity features and disease-related information by analyzing disparities in structural brain networks across subjects.
For the case of Alzheimer's disease, the proposed model performs better than the results from existing toolkits on the Alzheimer's Disease Neuroimaging Initiative database.
arXiv Detail & Related papers (2023-03-11T14:04:58Z) - Deep learning reveals the common spectrum underlying multiple brain
disorders in youth and elders from brain functional networks [53.257804915263165]
Brain disorders in the early and late life of humans potentially share pathological alterations in brain functions.
Key evidence from neuroimaging data for pathological commonness remains unrevealed.
We build a deep learning model, using multi-site functional magnetic resonance imaging data, for classifying 5 different brain disorders from healthy controls.
arXiv Detail & Related papers (2023-02-23T09:22:05Z) - Deep grading for MRI-based differential diagnosis of Alzheimer's disease
and Frontotemporal dementia [0.0]
Alzheimer's disease and Frontotemporal dementia are common forms of neurodegenerative dementia.
Current structural imaging methods mainly focus on the detection of each disease but rarely on their differential diagnosis.
We propose a deep learning based approach for both problems of disease detection and differential diagnosis.
arXiv Detail & Related papers (2022-11-25T13:25:18Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.