論文の概要: Channel Dependence, Limited Lookback Windows, and the Simplicity of Datasets: How Biased is Time Series Forecasting?
- arxiv url: http://arxiv.org/abs/2502.09683v1
- Date: Thu, 13 Feb 2025 13:35:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 14:45:10.666431
- Title: Channel Dependence, Limited Lookback Windows, and the Simplicity of Datasets: How Biased is Time Series Forecasting?
- Title(参考訳): Channel Dependence, 限定ルックバック Windows, およびデータセットの単純さ: 時系列予測はどの程度バイアスがあるか?
- Authors: Ibram Abdelmalak, Kiran Madhusudhanan, Jungmin Choi, Maximilian Stubbemann, Lars Schmidt-Thieme,
- Abstract要約: 現在の評価シナリオは、現在のデータセットの単純さに大きく偏っていることを示す。
さらに,ルックバックウィンドウが適切に調整された場合,現在のモデルではチャネル間の情報フローが不要であることが強調される。
我々は、CrossformerとTimeMixerのランタイムギャップを埋めるFast Channel-dependent Transformer(FaCT)を提案する。
- 参考スコア(独自算出の注目度): 4.995289882402786
- License:
- Abstract: Time-series forecasting research has converged to a small set of datasets and a standardized collection of evaluation scenarios. Such a standardization is to a specific extent needed for comparable research. However, the underlying assumption is, that the considered setting is a representative for the problem as a whole. In this paper, we challenge this assumption and show that the current scenario gives a strongly biased perspective on the state of time-series forecasting research. To be more detailed, we show that the current evaluation scenario is heavily biased by the simplicity of the current datasets. We furthermore emphasize, that when the lookback-window is properly tuned, current models usually do not need any information flow across channels. However, when using more complex benchmark data, the situation changes: Here, modeling channel-interactions in a sophisticated manner indeed enhances performances. Furthermore, in this complex evaluation scenario, Crossformer, a method regularly neglected as an important baseline, is the SOTA method for time series forecasting. Based on this, we present the Fast Channel-dependent Transformer (FaCT), a simplified version of Crossformer which closes the runtime gap between Crossformer and TimeMixer, leading to an efficient model for complex forecasting datasets.
- Abstract(参考訳): 時系列予測の研究は、少数のデータセットと標準化された評価シナリオの収集に集約されている。
このような標準化は、比較研究に必要な特定の範囲において必要である。
しかし、根底にある前提は、考慮された設定が問題全体の代表であるということである。
本稿では,この仮定に挑戦し,現在のシナリオが時系列予測研究の現状に強いバイアスを与えていることを示す。
より詳しくは、現在の評価シナリオが、現在のデータセットの単純さに大きく偏っていることを示す。
さらに,ルックバックウィンドウが適切に調整された場合,現在のモデルではチャネル間の情報フローが不要であることが強調される。
しかし、より複雑なベンチマークデータを使用すると、状況が変わります。 ここでは、洗練された方法でチャネル-インタラクションをモデリングすることで、実際にパフォーマンスが向上します。
さらに、この複雑な評価シナリオでは、重要なベースラインとして定期的に無視されるCrossformerは、時系列予測のためのSOTAメソッドである。
そこで我々は,Crossformerの簡易バージョンであるFast Channel-dependent Transformer (FaCT)を紹介し,CrossformerとTimeMixerのランタイムギャップを埋めることで,複雑な予測データセットの効率的なモデルを実現する。
関連論文リスト
- StreamEnsemble: Predictive Queries over Spatiotemporal Streaming Data [0.8437187555622164]
本稿では,時間的(ST)データ分布上の予測クエリに対する新しいアプローチであるStreamEnemblesを提案する。
実験により,本手法は従来のアンサンブル手法や単一モデル手法よりも精度と時間で優れていたことが明らかとなった。
論文 参考訳(メタデータ) (2024-09-30T23:50:16Z) - DAM: Towards A Foundation Model for Time Series Forecasting [0.8231118867997028]
本稿では,ランダムにサンプリングされた履歴を抽出し,時間連続関数として調整可能な基底組成を出力するニューラルモデルを提案する。
1)長い尾の分布からランダムにサンプリングされたヒストリーを使用する柔軟なアプローチ、(2)これらの活発にサンプリングされたヒストリーに基づいてトレーニングされたトランスフォーマーバックボーンを表現的出力として、(3)時間の連続関数の基底係数を含む。
論文 参考訳(メタデータ) (2024-07-25T08:48:07Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
本稿では,大規模時系列モデル(LTSM)の早期開発を目的とした。
事前トレーニング中に、最大10億のタイムポイントを持つ大規模なデータセットをキュレートします。
多様なアプリケーションのニーズを満たすため,予測,計算,時系列の異常検出を統一的な生成タスクに変換する。
論文 参考訳(メタデータ) (2024-02-04T06:55:55Z) - SCTc-TE: A Comprehensive Formulation and Benchmark for Temporal Event Forecasting [63.01035584154509]
私たちは完全に自動化されたパイプラインを開発し、約0.6百万のニュース記事からMidEast-TEという大規模なデータセットを構築しました。
このデータセットは、2015年から2022年まで、主に中東地域での協力と紛争イベントに焦点を当てている。
そこで本稿では,SCTc-TE予測にローカルコンテキストとグローバルコンテキストの両方を活用可能なLoGoを提案する。
論文 参考訳(メタデータ) (2023-12-02T07:40:21Z) - Time Series Forecasting via Semi-Asymmetric Convolutional Architecture
with Global Atrous Sliding Window [0.0]
本稿では,時系列予測の問題に対処するために提案手法を提案する。
現代のモデルのほとんどは、短い範囲の情報のみに焦点を当てており、時系列予測のような問題で致命的なものである。
パフォーマンス上のアドバンテージがあることを実験的に検証した3つの主要なコントリビューションを行います。
論文 参考訳(メタデータ) (2023-01-31T15:07:31Z) - Respecting Time Series Properties Makes Deep Time Series Forecasting
Perfect [3.830797055092574]
時系列予測モデルにおいて、時間的特徴をどのように扱うかが重要な問題である。
本稿では,3つの有意だが未確立の深層時系列予測機構を厳密に分析する。
上記の分析に基づいて,新しい時系列予測ネットワーク,すなわちRTNetを提案する。
論文 参考訳(メタデータ) (2022-07-22T08:34:31Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Few-Shot Forecasting of Time-Series with Heterogeneous Channels [4.635820333232681]
本研究では,時間的埋め込みを組み込んだ置換不変な深部集合ブロックからなるモデルを開発する。
実験を通して、我々のモデルはより単純なシナリオから実行されたベースラインよりも優れた一般化を提供することを示す。
論文 参考訳(メタデータ) (2022-04-07T14:02:15Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
我々は予測時間バッチ正規化と呼び、共変量シフト時のモデル精度とキャリブレーションを大幅に改善する。
予測時間バッチ正規化は、既存の最先端アプローチに相補的な利点をもたらし、ロバスト性を向上させることを示します。
この手法は、事前トレーニングと併用して使用すると、さまざまな結果が得られるが、より自然なタイプのデータセットシフトでは、パフォーマンスが良くないようだ。
論文 参考訳(メタデータ) (2020-06-19T05:08:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。