論文の概要: Respecting Time Series Properties Makes Deep Time Series Forecasting
Perfect
- arxiv url: http://arxiv.org/abs/2207.10941v1
- Date: Fri, 22 Jul 2022 08:34:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-25 12:40:33.171723
- Title: Respecting Time Series Properties Makes Deep Time Series Forecasting
Perfect
- Title(参考訳): 時系列特性を振り返る - 時系列予測が完璧になる
- Authors: Li Shen, Yuning Wei and Yangzhu Wang
- Abstract要約: 時系列予測モデルにおいて、時間的特徴をどのように扱うかが重要な問題である。
本稿では,3つの有意だが未確立の深層時系列予測機構を厳密に分析する。
上記の分析に基づいて,新しい時系列予測ネットワーク,すなわちRTNetを提案する。
- 参考スコア(独自算出の注目度): 3.830797055092574
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: How to handle time features shall be the core question of any time series
forecasting model. Ironically, it is often ignored or misunderstood by
deep-learning based models, even those baselines which are state-of-the-art.
This behavior makes their inefficient, untenable and unstable. In this paper,
we rigorously analyze three prevalent but deficient/unfounded deep time series
forecasting mechanisms or methods from the view of time series properties,
including normalization methods, multivariate forecasting and input sequence
length. Corresponding corollaries and solutions are given on both empirical and
theoretical basis. We thereby propose a novel time series forecasting network,
i.e. RTNet, on the basis of aforementioned analysis. It is general enough to be
combined with both supervised and self-supervised forecasting format. Thanks to
the core idea of respecting time series properties, no matter in which
forecasting format, RTNet shows obviously superior forecasting performances
compared with dozens of other SOTA time series forecasting baselines in three
real-world benchmark datasets. By and large, it even occupies less time
complexity and memory usage while acquiring better forecasting accuracy. The
source code is available at https://github.com/OrigamiSL/RTNet.
- Abstract(参考訳): 時間的特徴の扱い方は,どの時系列予測モデルにおいても核となる問題となる。
皮肉なことに、ディープラーニングベースのモデル、あるいは最先端のベースラインでさえ、しばしば無視または誤解される。
この行動は効率が悪く、不安定である。
本稿では,正規化法,多変量予測法,入力シーケンス長を含む時系列特性の観点から,有意だが未確立な3つの時系列予測機構や手法を厳密に分析する。
対応する座標と解は経験的および理論的に与えられる。
そこで本稿では,上記の解析に基づいて,rtnet という新たな時系列予測ネットワークを提案する。
一般的には、監督型と自己監督型の両方の予測形式と組み合わせられる。
RTNetは、どの予測フォーマットであっても、時系列特性を尊重するという中核的な考え方のおかげで、3つの実世界のベンチマークデータセットにおいて、他の数十のSOTA時系列予測ベースラインと比較して明らかに優れた予測性能を示す。
全体としては、予測精度を向上しながら、時間の複雑さやメモリ使用量も少なくなります。
ソースコードはhttps://github.com/origamisl/rtnetで入手できる。
関連論文リスト
- Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
クラウドオペレーションドメインから,大規模時系列予測データセットを3つ導入する。
強力なゼロショットベースラインであり、モデルとデータセットサイズの両方において、さらなるスケーリングの恩恵を受けています。
これらのデータセットと結果を取得することは、古典的および深層学習のベースラインを事前訓練された方法と比較した総合的なベンチマーク結果の集合である。
論文 参考訳(メタデータ) (2023-10-08T08:09:51Z) - Time Series Forecasting via Semi-Asymmetric Convolutional Architecture
with Global Atrous Sliding Window [0.0]
本稿では,時系列予測の問題に対処するために提案手法を提案する。
現代のモデルのほとんどは、短い範囲の情報のみに焦点を当てており、時系列予測のような問題で致命的なものである。
パフォーマンス上のアドバンテージがあることを実験的に検証した3つの主要なコントリビューションを行います。
論文 参考訳(メタデータ) (2023-01-31T15:07:31Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - Retrieval Based Time Series Forecasting [37.48394754614059]
時系列データは、スマートトランスポートや環境モニタリングなど、さまざまなアプリケーションに現れる。
時系列解析の基本的な問題の1つは時系列予測である。
理論的にも実証的にも,関連する時系列を参照として検索することで,不確実性を効果的に低減できることを示す。
論文 参考訳(メタデータ) (2022-09-27T16:43:55Z) - Split Time Series into Patches: Rethinking Long-term Series Forecasting
with Dateformer [17.454822366228335]
時間は時系列の最も重要な特徴の1つだが、あまり注目されていない。
本稿では、上記のプラクティスに従うのではなく、モデリング時間に注意を向けるDateformerを提案する。
ディザフォーマーは、40%の顕著な相対的な改善で最先端の精度を達成し、最大信頼性予測範囲を半年レベルに拡大する。
論文 参考訳(メタデータ) (2022-07-12T08:58:44Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Meta-Forecasting by combining Global DeepRepresentations with Local
Adaptation [12.747008878068314]
メタグローバルローカル自動回帰(Meta-GLAR)と呼ばれる新しい予測手法を導入する。
それは、リカレントニューラルネットワーク(RNN)によって生成された表現からワンステップアヘッド予測へのマッピングをクローズドフォームで学習することで、各時系列に適応する。
本手法は,先行研究で報告されたサンプル外予測精度において,最先端の手法と競合する。
論文 参考訳(メタデータ) (2021-11-05T11:45:02Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
本稿では,高次元時系列データを予測するための3段階フレームワークを提案する。
当社のフレームワークは非常に汎用的で,各ステップで時系列予測やクラスタリングが利用可能です。
単純な線形自己回帰モデルでインスタンス化されると、いくつかのベンチマークデータセットで最先端の結果が得られる。
論文 参考訳(メタデータ) (2021-10-26T20:41:19Z) - Series Saliency: Temporal Interpretation for Multivariate Time Series
Forecasting [30.054015098590874]
時系列予測のための時系列解釈のためのシリーズサリエンシーフレームワークを提示する。
時系列のスライディングウィンドウから「時系列画像」を抽出することにより、サリエンシーマップのセグメンテーションを適用する。
本フレームワークは,時系列予測タスクの時間的解釈を生成し,正確な時系列予測を生成する。
論文 参考訳(メタデータ) (2020-12-16T23:48:00Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
本稿では,時間集合予測のためのディープニューラルネットワークに基づく統合解を提案する。
ユニークな視点は、セットレベルの共起グラフを構築することで要素関係を学ぶことである。
我々は,要素や集合の時間依存性を適応的に学習するアテンションベースのモジュールを設計する。
論文 参考訳(メタデータ) (2020-06-20T03:29:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。