A Novel Hybrid Approach to Contraceptive Demand Forecasting: Integrating Point Predictions with Probabilistic Distributions
- URL: http://arxiv.org/abs/2502.09685v1
- Date: Thu, 13 Feb 2025 14:30:11 GMT
- Title: A Novel Hybrid Approach to Contraceptive Demand Forecasting: Integrating Point Predictions with Probabilistic Distributions
- Authors: Harsha Chamara Hewage, Bahman Rostami-Tabar, Aris Syntetos, Federico Liberatore, Glenn Milano,
- Abstract summary: We develop a hybrid model that combines point forecasts from domain-specific model with probabilistic distributions from statistical and machine learning approaches.
This approach helps address the uncertainties in demand and is particularly useful in resource-limited settings.
Our research fills a gap in forecasting contraceptive demand and offers a practical framework that combines algorithmic and human expertise.
- Score: 0.8796370521782165
- License:
- Abstract: Accurate demand forecasting is vital for ensuring reliable access to contraceptive products, supporting key processes like procurement, inventory, and distribution. However, forecasting contraceptive demand in developing countries presents challenges, including incomplete data, poor data quality, and the need to account for multiple geographical and product factors. Current methods often rely on simple forecasting techniques, which fail to capture demand uncertainties arising from these factors, warranting expert involvement. Our study aims to improve contraceptive demand forecasting by combining probabilistic forecasting methods with expert knowledge. We developed a hybrid model that combines point forecasts from domain-specific model with probabilistic distributions from statistical and machine learning approaches, enabling human input to fine-tune and enhance the system-generated forecasts. This approach helps address the uncertainties in demand and is particularly useful in resource-limited settings. We evaluate different forecasting methods, including time series, Bayesian, machine learning, and foundational time series methods alongside our new hybrid approach. By comparing these methods, we provide insights into their strengths, weaknesses, and computational requirements. Our research fills a gap in forecasting contraceptive demand and offers a practical framework that combines algorithmic and human expertise. Our proposed model can also be generalized to other humanitarian contexts with similar data patterns.
Related papers
- Hybrid Forecasting of Geopolitical Events [71.73737011120103]
SAGE is a hybrid forecasting system that combines human and machine generated forecasts.
The system aggregates human and machine forecasts weighting both for propinquity and based on assessed skill.
We show that skilled forecasters who had access to machine-generated forecasts outperformed those who only viewed historical data.
arXiv Detail & Related papers (2024-12-14T22:09:45Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Travel Demand Forecasting: A Fair AI Approach [0.9383397937755517]
We propose a novel methodology to develop fairness-aware, highly-accurate travel demand forecasting models.
Specifically, we introduce a new fairness regularization term, which is explicitly designed to measure the correlation between prediction accuracy and protected attributes.
Results highlight that our proposed methodology can effectively enhance fairness for multiple protected attributes while preserving prediction accuracy.
arXiv Detail & Related papers (2023-03-03T03:16:54Z) - A review of predictive uncertainty estimation with machine learning [0.0]
We review the topic of predictive uncertainty estimation with machine learning algorithms.
We discuss the related metrics (consistent scoring functions and proper scoring rules) for assessing probabilistic predictions.
The review expedites our understanding on how to develop new algorithms tailored to users' needs.
arXiv Detail & Related papers (2022-09-17T10:36:30Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - Forecast combinations: an over 50-year review [16.590353808305245]
Forecast combinations have flourished remarkably in the forecasting community.
This paper provides an up-to-date review of the literature on forecast combinations.
We discuss the potential and limitations of various methods and highlight how these ideas have developed over time.
arXiv Detail & Related papers (2022-05-09T12:14:02Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - Forecasting COVID-19 daily cases using phone call data [0.0]
We propose a simple Multiple Linear Regression model optimised to use call data to forecast the number of daily confirmed cases.
Our proposed approach outperforms ARIMA, ETS and a regression model without call data, evaluated by three point forecast error metrics, one prediction interval and two probabilistic forecast accuracy measures.
arXiv Detail & Related papers (2020-10-05T18:07:07Z) - Demand Forecasting of Individual Probability Density Functions with
Machine Learning [0.0]
This work proposes new techniques for assessing the accuracy of predicted distributions.
Using the supervised machine learning method "Cyclic Boosting", complete individual probability density functions can be predicted such that each prediction is fully explainable.
arXiv Detail & Related papers (2020-09-15T13:05:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.