Revealing correlated noise with single-qubit operations
- URL: http://arxiv.org/abs/2502.09706v1
- Date: Thu, 13 Feb 2025 19:00:10 GMT
- Title: Revealing correlated noise with single-qubit operations
- Authors: Balázs Gulácsi, Joris Kattemölle, Guido Burkard,
- Abstract summary: Spatially correlated noise poses a significant challenge to fault-tolerant quantum computation.<n>We propose straightforward and efficient techniques to detect and quantify these correlations.<n>Specifically, we use that correlated relaxation is connected to the superradiance effect which we show to be accessible by single-qubit measurements.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatially correlated noise poses a significant challenge to fault-tolerant quantum computation by breaking the assumption of independent errors. Existing methods such as cycle benchmarking and quantum process tomography can characterize noise correlations but require substantial resources. We propose straightforward and efficient techniques to detect and quantify these correlations by leveraging collective phenomena arising from environmental correlations in a qubit register. In these techniques, single-qubit state preparations, single-qubit gates, and single-qubit measurements, combined with classical post-processing, suffice to uncover correlated relaxation and dephasing. Specifically, we use that correlated relaxation is connected to the superradiance effect which we show to be accessible by single-qubit measurements. Analogously, the established parity oscillation protocol can be refined to reveal correlated dephasing through characteristic changes in the oscillation line shape, without requiring the preparation of complex and entangled states.
Related papers
- Modeling and Characterization of Arbitrary Order Pulse Correlations for Quantum Key Distribution [0.31410859223862103]
We introduce a simple linear model to explain pulse correlations.<n>We experimentally characterize short-range correlations and apply the proposed method to account for long-range correlations to an infinite order.
arXiv Detail & Related papers (2025-06-23T14:26:53Z) - Mitigation of correlated readout errors without randomized measurements [0.0]
We present a readout error mitigation protocol that uses only single-qubit Pauli measurements.
The proposed approach captures a very broad class of correlated noise models.
It is based on a complete and efficient characterization of few-qubit correlated positive operator-valued measures.
arXiv Detail & Related papers (2025-03-31T16:21:45Z) - Efficient learning and optimizing non-Gaussian correlated noise in digitally controlled qubit systems [0.6138671548064356]
We show how to achieve higher-order spectral estimation for noise-optimized circuit design.<n>Remarkably, we find that the digitally driven qubit dynamics can be solely determined by the complexity of the applied control.
arXiv Detail & Related papers (2025-02-08T02:09:40Z) - Disentangled Noisy Correspondence Learning [56.06801962154915]
Cross-modal retrieval is crucial in understanding latent correspondences across modalities.
DisNCL is a novel information-theoretic framework for feature Disentanglement in Noisy Correspondence Learning.
arXiv Detail & Related papers (2024-08-10T09:49:55Z) - Entanglement and operator correlation signatures of many-body quantum Zeno phases in inefficiently monitored noisy systems [49.1574468325115]
The interplay between information-scrambling Hamiltonians and local continuous measurements hosts platforms for exotic measurement-induced phase transition.
We identify a non-monotonic dependence on the local noise strength in both the averaged entanglement and operator correlations.
The analysis of scaling with the system size in a finite length chain indicates that, at finite efficiency, this effect leads to distinct MiPTs for operator correlations and entanglement.
arXiv Detail & Related papers (2024-07-16T13:42:38Z) - Limitations to Dynamical Error Suppression and Gate-Error Virtualization from Temporally Correlated Nonclassical Noise [0.0]
We study a minimal exactly solvable single-qubit model under Gaussian quantum dephasing noise.
For digital periodic control, we prove that, under mild conditions on the low-frequency behavior of the nonclassical noise spectrum, the gate fidelity saturates at a value that is strictly smaller than the one attainable in the absence of control history.
We find that only if decoupling can keep the qubit highly pure over a timescale larger than the correlation time of the noise, the bath approximately converges to its original statistics and a stable-in-time control performance is recovered.
arXiv Detail & Related papers (2024-07-05T18:00:00Z) - Certifying nonlocal properties of noisy quantum operations [0.0]
We provide a unified framework to certify nonlocal properties of quantum channels from the correlations obtained in measurement protocols.
We study the effect of different models of dephasing noise, some of which are shown to generate nonlocality and entanglement in special cases.
arXiv Detail & Related papers (2024-07-02T18:00:06Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Spatially correlated classical and quantum noise in driven qubits: The
good, the bad, and the ugly [0.0]
Correlated noise across multiple qubits poses a significant challenge for achieving scalable quantum processors.
We study the dynamics of driven qubits under spatially correlated noise, including both Markovian and non-Markovian noise.
In particular, we reveal that, in the quantum limit, pure dephasing noise induces a coherent long-range two-qubit Ising interaction that correlates distant qubits.
arXiv Detail & Related papers (2023-08-06T08:34:49Z) - Characterizing low-frequency qubit noise [55.41644538483948]
Fluctuations of the qubit frequencies are one of the major problems to overcome on the way to scalable quantum computers.
The statistics of the fluctuations can be characterized by measuring the correlators of the outcomes of periodically repeated Ramsey measurements.
This work suggests a method that allows describing qubit dynamics during repeated measurements in the presence of evolving noise.
arXiv Detail & Related papers (2022-07-04T22:48:43Z) - Pipelined correlated minimum weight perfect matching of the surface code [56.01788646782563]
We describe a pipeline approach to decoding the surface code using minimum weight perfect matching.
An independent no-communication parallelizable processing stage reweights the graph according to likely correlations.
A later general stage finishes the matching.
We validate the new algorithm on the fully fault-tolerant toric, unrotated, and rotated surface codes.
arXiv Detail & Related papers (2022-05-19T19:58:02Z) - Estimation of correlations and non-separability in quantum channels via
unitarity benchmarking [0.0]
Correlation structures in quantum channels are less studied than those in quantum states.
We develop a range of results for efficient estimation of correlations within a bipartite quantum channel.
We show that correlated unitarity can be estimated in a SPAM-robust manner for any separable quantum channel.
arXiv Detail & Related papers (2021-04-09T13:29:37Z) - Process tomography of Robust Dynamical Decoupling in Superconducting
Qubits [91.3755431537592]
The Rigetti quantum computing platform was used to test different dynamical decoupling sequences.
The performance of the sequences was characterized by Quantum Process Tomography and analyzed using the quantum channels formalism.
arXiv Detail & Related papers (2020-06-18T14:48:18Z) - Optimal Learning with Excitatory and Inhibitory synapses [91.3755431537592]
I study the problem of storing associations between analog signals in the presence of correlations.
I characterize the typical learning performance in terms of the power spectrum of random input and output processes.
arXiv Detail & Related papers (2020-05-25T18:25:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.