Vote-Tree-Planner: Optimizing Execution Order in LLM-based Task Planning Pipeline via Voting
- URL: http://arxiv.org/abs/2502.09749v1
- Date: Thu, 13 Feb 2025 20:08:06 GMT
- Title: Vote-Tree-Planner: Optimizing Execution Order in LLM-based Task Planning Pipeline via Voting
- Authors: Chaoyuan Zhang, Zhaowei Li, Wentao Yuan,
- Abstract summary: This paper addresses the synergy between large language models (LLMs) and task planning systems.
We propose Vote-Tree-Planner to minimize redundancy while enhancing planning effectiveness.
- Score: 4.500734889060007
- License:
- Abstract: Integrating large language models (LLMs) into closed-loop robotic task planning has become increasingly popular within embodied artificial intelligence. Previous efforts mainly focused on leveraging the strong reasoning abilities of LLMs to enhance task planning performance while often overlooking task planning efficiency and executability due to repetitive queries to LLMs. This paper addresses the synergy between LLMs and task planning systems, aiming to minimize redundancy while enhancing planning effectiveness. Specifically, building upon Prog-Prompt and the high-level concept of Tree-Planner, we propose Vote-Tree-Planner. This sampling strategy utilizes votes to guide plan traversal during the decision-making process. Our approach is motivated by a straightforward observation: assigning weights to agents during decision-making enables the evaluation of critical paths before execution. With this simple vote-tree construction, our method further improves the success rate and reduces the number of queries to LLMs. The experimental results highlight that our Vote-Tree-Planner demonstrates greater stability and shows a higher average success rate and goal condition recall on the unseen dataset compared with previous baseline methods. These findings underscore the potential of the Vote-Tree-Planner to enhance planning accuracy, reliability, and efficiency in LLM-based planning systems.
Related papers
- Zero-shot Robotic Manipulation with Language-guided Instruction and Formal Task Planning [16.89900521727246]
We propose an innovative language-guided symbolic task planning (LM-SymOpt) framework with optimization.
It is the first expert-free planning framework since we combine the world knowledge from Large Language Models with formal reasoning.
Our experimental results show that LM-SymOpt outperforms existing LLM-based planning approaches.
arXiv Detail & Related papers (2025-01-25T13:33:22Z) - Hindsight Planner: A Closed-Loop Few-Shot Planner for Embodied Instruction Following [62.10809033451526]
This work focuses on building a task planner for Embodied Instruction Following (EIF) using Large Language Models (LLMs)
We frame the task as a Partially Observable Markov Decision Process (POMDP) and aim to develop a robust planner under a few-shot assumption.
Our experiments on the ALFRED dataset indicate that our planner achieves competitive performance under a few-shot assumption.
arXiv Detail & Related papers (2024-12-27T10:05:45Z) - Query-Efficient Planning with Language Models [8.136901056728945]
Planning in complex environments requires an agent to efficiently query a world model to find a sequence of actions from start to goal.
Recent work has shown that Large Language Models (LLMs) can potentially help with planning by searching over promising states and adapting to feedback from the world.
We show that while both approaches improve upon comparable baselines, using an LLM as a generative planner results in significantly fewer interactions.
arXiv Detail & Related papers (2024-12-09T02:51:21Z) - Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning [94.76546523689113]
We introduce CodePlan, a framework that generates and follows textcode-form plans -- pseudocode that outlines high-level, structured reasoning processes.
CodePlan effectively captures the rich semantics and control flows inherent to sophisticated reasoning tasks.
It achieves a 25.1% relative improvement compared with directly generating responses.
arXiv Detail & Related papers (2024-09-19T04:13:58Z) - Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
This work lays the foundations for improving planning capabilities of large language models (LLMs)
We construct a comprehensive benchmark suite encompassing both classical planning benchmarks and natural language scenarios.
We investigate the use of many-shot in-context learning to enhance LLM planning, exploring the relationship between increased context length and improved planning performance.
arXiv Detail & Related papers (2024-06-18T22:57:06Z) - Consolidating Trees of Robotic Plans Generated Using Large Language
Models to Improve Reliability [6.4111574364474215]
The inherent probabilistic nature of Large Language Models (LLMs) introduces an element of unpredictability.
This paper introduces an innovative approach aims to generate correct and optimal robotic task plans for diverse real-world demands and scenarios.
arXiv Detail & Related papers (2024-01-15T18:01:59Z) - Tree-Planner: Efficient Close-loop Task Planning with Large Language Models [63.06270302774049]
Tree-Planner reframes task planning with Large Language Models into three distinct phases.
Tree-Planner achieves state-of-the-art performance while maintaining high efficiency.
arXiv Detail & Related papers (2023-10-12T17:59:50Z) - AdaPlanner: Adaptive Planning from Feedback with Language Models [56.367020818139665]
Large language models (LLMs) have recently demonstrated the potential in acting as autonomous agents for sequential decision-making tasks.
We propose a closed-loop approach, AdaPlanner, which allows the LLM agent to refine its self-generated plan adaptively in response to environmental feedback.
To mitigate hallucination, we develop a code-style LLM prompt structure that facilitates plan generation across a variety of tasks, environments, and agent capabilities.
arXiv Detail & Related papers (2023-05-26T05:52:27Z) - Divide-and-Conquer Monte Carlo Tree Search For Goal-Directed Planning [78.65083326918351]
We consider alternatives to an implicit sequential planning assumption.
We propose Divide-and-Conquer Monte Carlo Tree Search (DC-MCTS) for approximating the optimal plan.
We show that this algorithmic flexibility over planning order leads to improved results in navigation tasks in grid-worlds.
arXiv Detail & Related papers (2020-04-23T18:08:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.