Dynamic-Computed Tomography Angiography for Cerebral Vessel Templates and Segmentation
- URL: http://arxiv.org/abs/2502.09893v1
- Date: Fri, 14 Feb 2025 03:33:04 GMT
- Title: Dynamic-Computed Tomography Angiography for Cerebral Vessel Templates and Segmentation
- Authors: Shrikanth Yadav, Jisoo Kim, Geoffrey Young, Lei Qin,
- Abstract summary: We develop and evaluate two segmentation techniques to segment vessels directly on Computed Tomography Angiography images.
To create DL vessel segmentations, arterial and venous structures were segmented using the MRA vessel segmentation tool, iCafe, in 29 patients.
Both segmentation approaches were evaluated on a test 4D-CT dataset of 11 patients and validated by a neuroradiologist.
- Score: 2.4012801238551322
- License:
- Abstract: Background: Computed Tomography Angiography (CTA) is crucial for cerebrovascular disease diagnosis. Dynamic CTA is a type of imaging that captures temporal information about the We aim to develop and evaluate two segmentation techniques to segment vessels directly on CTA images: (1) creating and registering population-averaged vessel atlases and (2) using deep learning (DL). Methods: We retrieved 4D-CT of the head from our institutional research database, with bone and soft tissue subtracted from post-contrast images. An Advanced Normalization Tools pipeline was used to create angiographic atlases from 25 patients. Then, atlas-driven ROIs were identified by a CT attenuation threshold to generate segmentation of the arteries and veins using non-linear registration. To create DL vessel segmentations, arterial and venous structures were segmented using the MRA vessel segmentation tool, iCafe, in 29 patients. These were then used to train a DL model, with bone-in CT images as input. Multiple phase images in the 4D-CT were used to increase the training and validation dataset. Both segmentation approaches were evaluated on a test 4D-CT dataset of 11 patients which were also processed by iCafe and validated by a neuroradiologist. Specifically, branch-wise segmentation accuracy was quantified with 20 labels for arteries and one for veins. DL outperformed the atlas-based segmentation models for arteries (average modified dice coefficient (amDC) 0.856 vs. 0.324) and veins (amDC 0.743 vs. 0.495) overall. For ICAs, vertebral and basilar arteries, DL and atlas -based segmentation had an amDC of 0.913 and 0.402, respectively. The amDC for MCA-M1, PCA-P1, and ACA-A1 segments were 0.932 and 0.474, respectively. Conclusion: Angiographic CT templates are developed for the first time in literature. Using 4D-CTA enables the use of tools like iCafe, lessening the burden of manual annotation.
Related papers
- TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - MRSegmentator: Multi-Modality Segmentation of 40 Classes in MRI and CT [29.48170108608303]
The model was trained on 1,200 manually annotated 3D axial MRI scans from the UK Biobank, 221 in-house MRI scans, and 1228 CT scans.
It demonstrated high accuracy for well-defined organs (lungs: DSC 0.96, heart: DSC 0.94) and organs with anatomic variability (liver: DSC 0.96, kidneys: DSC 0.95)
It generalized well to CT, achieving DSC mean of 0.84 $pm$ 0.11 on AMOS CT data.
arXiv Detail & Related papers (2024-05-10T13:15:42Z) - Contrast-agent-induced deterministic component of CT-density in the
abdominal aorta during routine angiography: proof of concept study [0.0]
We develop a model describing the dynamic behavior of the contrast agent in the vessel.
It can be useful for both increasing the diagnostic value of a particular study and improving the CT data processing tools.
arXiv Detail & Related papers (2023-10-31T07:59:57Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - CT Perfusion is All We Need: 4D CNN Segmentation of Penumbra and Core in
Patients With Suspected Ischemic Stroke [1.6836876499886009]
This paper investigates different methods to utilize the entire 4 convolutionD as input to fully exploit thetemporal information.
Adopting the proposed 4D mJ-Net, a Dice Coefficient of 0.53 and 0.23 is achieved for segmenting penumbra and core areas, respectively.
arXiv Detail & Related papers (2023-03-15T16:53:19Z) - O2CTA: Introducing Annotations from OCT to CCTA in Coronary Plaque
Analysis [19.099761377777412]
Coronary CT angiography (CCTA) is widely used for artery imaging and determining the stenosis degree.
It can be settled by invasive optical coherence tomography ( OCT) without much trouble for physicians, but bringing higher costs and potential risks to patients.
We propose a method to handle the O2CTA problem. CCTA scans are first reconstructed into multi-planar reformatted (MPR) images, which agree with OCT images in term of semantic contents.
The artery segment in OCT, which is manually labelled, is then spatially aligned with the entire artery in MPR images via the proposed alignment strategy.
arXiv Detail & Related papers (2023-03-11T09:40:05Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
We present a deep learning segmentation model for body CT images.
The model can segment 104 anatomical structures relevant for use cases such as organ volumetry, disease characterization, and surgical or radiotherapy planning.
arXiv Detail & Related papers (2022-08-11T15:16:40Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
We propose a method that does not require either large annotated datasets or backpropagation to estimate the filters of a convolutional neural network (CNN)
For a few CT images, the user draws markers at representative normal and abnormal regions.
The method generates a feature extractor composed of a sequence of convolutional layers, whose kernels are specialized in enhancing regions similar to the marked ones.
arXiv Detail & Related papers (2021-11-16T15:03:42Z) - Deep learning-based detection of intravenous contrast in computed
tomography scans [0.7313653675718069]
Identifying intravenous (IV) contrast use within CT scans is a key component of data curation for model development and testing.
We developed and validated a CNN-based deep learning platform to identify IV contrast within CT scans.
arXiv Detail & Related papers (2021-10-16T00:46:45Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
We propose a novel deep learning model called PC-Net to segment retinal vessels and major arteries in 2D fundus image and 3D computed tomography angiography (CTA) scans.
In PC-Net, the pyramid squeeze-and-excitation (PSE) module introduces spatial information to each convolutional block, boosting its ability to extract more effective multi-scale features.
arXiv Detail & Related papers (2020-10-09T08:22:54Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.