Artificial Intelligence in Spectroscopy: Advancing Chemistry from Prediction to Generation and Beyond
- URL: http://arxiv.org/abs/2502.09897v1
- Date: Fri, 14 Feb 2025 04:07:25 GMT
- Title: Artificial Intelligence in Spectroscopy: Advancing Chemistry from Prediction to Generation and Beyond
- Authors: Kehan Guo, Yili Shen, Gisela Abigail Gonzalez-Montiel, Yue Huang, Yujun Zhou, Mihir Surve, Zhichun Guo, Prayel Das, Nitesh V Chawla, Olaf Wiest, Xiangliang Zhang,
- Abstract summary: The rapid advent of machine learning (ML) and artificial intelligence (AI) has catalyzed major transformations in chemistry.
The application of these methods to spectroscopic and spectrometric data, referred to as Spectroscopy Machine Learning (SpectraML), remains relatively underexplored.
We provide a unified review of SpectraML, systematically examining state-of-the-art approaches for both forward tasks and inverse tasks.
- Score: 38.32974480709081
- License:
- Abstract: The rapid advent of machine learning (ML) and artificial intelligence (AI) has catalyzed major transformations in chemistry, yet the application of these methods to spectroscopic and spectrometric data, referred to as Spectroscopy Machine Learning (SpectraML), remains relatively underexplored. Modern spectroscopic techniques (MS, NMR, IR, Raman, UV-Vis) generate an ever-growing volume of high-dimensional data, creating a pressing need for automated and intelligent analysis beyond traditional expert-based workflows. In this survey, we provide a unified review of SpectraML, systematically examining state-of-the-art approaches for both forward tasks (molecule-to-spectrum prediction) and inverse tasks (spectrum-to-molecule inference). We trace the historical evolution of ML in spectroscopy, from early pattern recognition to the latest foundation models capable of advanced reasoning, and offer a taxonomy of representative neural architectures, including graph-based and transformer-based methods. Addressing key challenges such as data quality, multimodal integration, and computational scalability, we highlight emerging directions such as synthetic data generation, large-scale pretraining, and few- or zero-shot learning. To foster reproducible research, we also release an open-source repository containing recent papers and their corresponding curated datasets (https://github.com/MINE-Lab-ND/SpectrumML_Survey_Papers). Our survey serves as a roadmap for researchers, guiding progress at the intersection of spectroscopy and AI.
Related papers
- Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
This paper introduces fundamental concepts, traditional methods, and benchmark datasets, then examine the various roles Machine Learning plays in improving CFD.
We highlight real-world applications of ML for CFD in critical scientific and engineering disciplines, including aerodynamics, combustion, atmosphere & ocean science, biology fluid, plasma, symbolic regression, and reduced order modeling.
We draw the conclusion that ML is poised to significantly transform CFD research by enhancing simulation accuracy, reducing computational time, and enabling more complex analyses of fluid dynamics.
arXiv Detail & Related papers (2024-08-22T07:33:11Z) - A Quick, trustworthy spectral knowledge Q&A system leveraging retrieval-augmented generation on LLM [0.0]
Large Language Model (LLM) has demonstrated significant success in a range of natural language processing (NLP) tasks within general domain.
We introduce the Spectral Detection and Analysis Based Paper (SDAAP) dataset, which is the first open-source textual knowledge dataset for spectral analysis and detection.
We also designed an automated Q&A framework based on the SDAAP dataset, which can retrieve relevant knowledge and generate high-quality responses.
arXiv Detail & Related papers (2024-08-21T12:09:37Z) - Deep Learning Domain Adaptation to Understand Physico-Chemical Processes from Fluorescence Spectroscopy Small Datasets: Application to Ageing of Olive Oil [4.14360329494344]
Fluorescence spectroscopy is a fundamental tool in life sciences and chemistry, widely used for applications such as environmental monitoring, food quality control, and biomedical diagnostics.
Analysis of spectroscopic data with deep learning, in particular of fluorescence excitation-emission matrices (EEMs), presents significant challenges due to the typically small and sparse datasets available.
This study proposes a new approach that exploits domain adaptation with pretrained vision models, alongside a novel interpretability algorithm to address these challenges.
arXiv Detail & Related papers (2024-06-14T13:41:21Z) - Intelligent Chemical Purification Technique Based on Machine Learning [5.023197681500998]
We present an innovative of artificial intelligence with column chromatography, aiming to resolve inefficiencies and standardize data collection in chemical separation and purification domain.
By developing an automated platform for precise data acquisition and employing advanced machine learning algorithms, we constructed predictive models to forecast key separation parameters.
A novel metric, separation probability ($S_p$), quantifies the likelihood of effective compound separation, validated through experimental verification.
arXiv Detail & Related papers (2024-04-14T01:44:58Z) - Lessons Learned from Mining the Hugging Face Repository [5.394314536012109]
Report synthesizes insights from two comprehensive studies conducted on Hugging Face (HF)
Our objective is to provide a practical guide for future researchers embarking on mining software repository studies within the HF ecosystem.
arXiv Detail & Related papers (2024-02-11T22:59:19Z) - Closing the loop: Autonomous experiments enabled by
machine-learning-based online data analysis in synchrotron beamline
environments [80.49514665620008]
Machine learning can be used to enhance research involving large or rapidly generated datasets.
In this study, we describe the incorporation of ML into a closed-loop workflow for X-ray reflectometry (XRR)
We present solutions that provide an elementary data analysis in real time during the experiment without introducing the additional software dependencies in the beamline control software environment.
arXiv Detail & Related papers (2023-06-20T21:21:19Z) - Machine Learning for Uncovering Biological Insights in Spatial
Transcriptomics Data [0.0]
Development and homeostasis in multicellular systems require exquisite control over spatial molecular pattern formation and maintenance.
Advances in spatial transcriptomics (ST) have led to rapid development of innovative machine learning (ML) tools.
We summarize major ST analysis goals that ML can help address and current analysis trends.
arXiv Detail & Related papers (2023-03-29T14:22:08Z) - Improving Molecular Representation Learning with Metric
Learning-enhanced Optimal Transport [49.237577649802034]
We develop a novel optimal transport-based algorithm termed MROT to enhance their generalization capability for molecular regression problems.
MROT significantly outperforms state-of-the-art models, showing promising potential in accelerating the discovery of new substances.
arXiv Detail & Related papers (2022-02-13T04:56:18Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.