Deep Learning Domain Adaptation to Understand Physico-Chemical Processes from Fluorescence Spectroscopy Small Datasets: Application to Ageing of Olive Oil
- URL: http://arxiv.org/abs/2406.10031v2
- Date: Sat, 22 Jun 2024 07:29:35 GMT
- Title: Deep Learning Domain Adaptation to Understand Physico-Chemical Processes from Fluorescence Spectroscopy Small Datasets: Application to Ageing of Olive Oil
- Authors: Umberto Michelucci, Francesca Venturini,
- Abstract summary: Fluorescence spectroscopy is a fundamental tool in life sciences and chemistry, widely used for applications such as environmental monitoring, food quality control, and biomedical diagnostics.
Analysis of spectroscopic data with deep learning, in particular of fluorescence excitation-emission matrices (EEMs), presents significant challenges due to the typically small and sparse datasets available.
This study proposes a new approach that exploits domain adaptation with pretrained vision models, alongside a novel interpretability algorithm to address these challenges.
- Score: 4.14360329494344
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Fluorescence spectroscopy is a fundamental tool in life sciences and chemistry, widely used for applications such as environmental monitoring, food quality control, and biomedical diagnostics. However, analysis of spectroscopic data with deep learning, in particular of fluorescence excitation-emission matrices (EEMs), presents significant challenges due to the typically small and sparse datasets available. Furthermore, the analysis of EEMs is difficult due to their high dimensionality and overlapping spectral features. This study proposes a new approach that exploits domain adaptation with pretrained vision models, alongside a novel interpretability algorithm to address these challenges. Thanks to specialised feature engineering of the neural networks described in this work, we are now able to provide deeper insights into the physico-chemical processes underlying the data. The proposed approach is demonstrated through the analysis of the oxidation process in extra virgin olive oil (EVOO) during ageing, showing its effectiveness in predicting quality indicators and identifying the spectral bands, and thus the molecules involved in the process. This work describes a significantly innovative approach in the use of deep learning for spectroscopy, transforming it from a black box into a tool for understanding complex biological and chemical processes.
Related papers
- Machine learning meets mass spectrometry: a focused perspective [0.0]
Mass spectrometry is a widely used method to study molecules and processes in medicine, life sciences, chemistry, and industrial product quality control, among many other applications.
One of the main features of some mass spectrometry techniques is the extensive level of characterization and a large amount of generated data per measurement.
With the development of machine learning methods, the opportunity arises to unlock the potential of these data, enabling previously inaccessible discoveries.
arXiv Detail & Related papers (2024-06-27T14:18:23Z) - ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
The challenge of replicating research results has posed a significant impediment to the field of molecular biology.
We first curate a comprehensive multimodal dataset, named ProBio, as an initial step towards this objective.
Next, we devise two challenging benchmarks, transparent solution tracking and multimodal action recognition, to emphasize the unique characteristics and difficulties associated with activity understanding in BioLab settings.
arXiv Detail & Related papers (2023-11-01T14:44:01Z) - Robust retrieval of material chemical states in X-ray microspectroscopy [10.621361408885765]
We propose a novel data formulation model for X-ray microspectroscopy and develop a dedicated unmixing framework to solve this problem.
Our framework can accurately identify and characterize chemical states in complex and heterogeneous samples, even under challenging conditions.
arXiv Detail & Related papers (2023-08-08T12:17:02Z) - Machine Learning for Uncovering Biological Insights in Spatial
Transcriptomics Data [0.0]
Development and homeostasis in multicellular systems require exquisite control over spatial molecular pattern formation and maintenance.
Advances in spatial transcriptomics (ST) have led to rapid development of innovative machine learning (ML) tools.
We summarize major ST analysis goals that ML can help address and current analysis trends.
arXiv Detail & Related papers (2023-03-29T14:22:08Z) - ChemVise: Maximizing Out-of-Distribution Chemical Detection with the
Novel Application of Zero-Shot Learning [60.02503434201552]
This research proposes learning approximations of complex exposures from training sets of simple ones.
We demonstrate this approach to synthetic sensor responses surprisingly improves the detection of out-of-distribution obscured chemical analytes.
arXiv Detail & Related papers (2023-02-09T20:19:57Z) - Exploring Supervised Machine Learning for Multi-Phase Identification and
Quantification from Powder X-Ray Diffraction Spectra [1.0660480034605242]
Powder X-ray diffraction analysis is a critical component of materials characterization methodologies.
Deep learning has become a prime focus for predicting crystallographic parameters and features from X-ray spectra.
Here, we are interested in conventional supervised learning algorithms in lieu of deep learning for multi-label crystalline phase identification.
arXiv Detail & Related papers (2022-11-16T00:36:13Z) - Spectroscopic data de-noising via training-set-free deep learning method [0.0]
We develop a de-noising method for extracting intrinsic spectral information without the need for a training set.
This is possible as our method leverages the self-correlation information of the spectra themselves.
It preserves the intrinsic energy band features and thus facilitates further analysis and processing.
arXiv Detail & Related papers (2022-10-19T12:04:35Z) - Machine learning in bioprocess development: From promise to practice [58.720142291102135]
Data-driven methods like machine learning (ML) approaches have a high potential to rationally explore large design spaces.
The aim of this review is to demonstrate how ML methods have been applied so far in bioprocess development.
arXiv Detail & Related papers (2022-10-04T13:48:59Z) - Improving Molecular Representation Learning with Metric
Learning-enhanced Optimal Transport [49.237577649802034]
We develop a novel optimal transport-based algorithm termed MROT to enhance their generalization capability for molecular regression problems.
MROT significantly outperforms state-of-the-art models, showing promising potential in accelerating the discovery of new substances.
arXiv Detail & Related papers (2022-02-13T04:56:18Z) - Unsupervised Machine Learning for Exploratory Data Analysis of Exoplanet
Transmission Spectra [68.8204255655161]
We focus on unsupervised techniques for analyzing spectral data from transiting exoplanets.
We show that there is a high degree of correlation in the spectral data, which calls for appropriate low-dimensional representations.
We uncover interesting structures in the principal component basis, namely, well-defined branches corresponding to different chemical regimes.
arXiv Detail & Related papers (2022-01-07T22:26:33Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.