A Quick, trustworthy spectral knowledge Q&A system leveraging retrieval-augmented generation on LLM
- URL: http://arxiv.org/abs/2408.11557v4
- Date: Fri, 11 Oct 2024 15:13:51 GMT
- Title: A Quick, trustworthy spectral knowledge Q&A system leveraging retrieval-augmented generation on LLM
- Authors: Jiheng Liang, Ziru Yu, Zujie Xie, Xiangyang Yu,
- Abstract summary: Large Language Model (LLM) has demonstrated significant success in a range of natural language processing (NLP) tasks within general domain.
We introduce the Spectral Detection and Analysis Based Paper (SDAAP) dataset, which is the first open-source textual knowledge dataset for spectral analysis and detection.
We also designed an automated Q&A framework based on the SDAAP dataset, which can retrieve relevant knowledge and generate high-quality responses.
- Score: 0.0
- License:
- Abstract: Large Language Model (LLM) has demonstrated significant success in a range of natural language processing (NLP) tasks within general domain. The emergence of LLM has introduced innovative methodologies across diverse fields, including the natural sciences. Researchers aim to implement automated, concurrent process driven by LLM to supplant conventional manual, repetitive and labor-intensive work. In the domain of spectral analysis and detection, it is imperative for researchers to autonomously acquire pertinent knowledge across various research objects, which encompasses the spectroscopic techniques and the chemometric methods that are employed in experiments and analysis. Paradoxically, despite the recognition of spectroscopic detection as an effective analytical method, the fundamental process of knowledge retrieval remains both time-intensive and repetitive. In response to this challenge, we first introduced the Spectral Detection and Analysis Based Paper(SDAAP) dataset, which is the first open-source textual knowledge dataset for spectral analysis and detection and contains annotated literature data as well as corresponding knowledge instruction data. Subsequently, we also designed an automated Q\&A framework based on the SDAAP dataset, which can retrieve relevant knowledge and generate high-quality responses by extracting entities in the input as retrieval parameters. It is worth noting that: within this framework, LLM is only used as a tool to provide generalizability, while RAG technique is used to accurately capture the source of the knowledge.This approach not only improves the quality of the generated responses, but also ensures the traceability of the knowledge. Experimental results show that our framework generates responses with more reliable expertise compared to the baseline.
Related papers
- Injecting Domain-Specific Knowledge into Large Language Models: A Comprehensive Survey [39.82566660592583]
Large Language Models (LLMs) have demonstrated remarkable success in various tasks such as natural language understanding, text summarization, and machine translation.
Their general-purpose nature often limits their effectiveness in domain-specific applications that require specialized knowledge, such as healthcare, chemistry, or legal analysis.
To address this, researchers have explored diverse methods to enhance LLMs by integrating domain-specific knowledge.
arXiv Detail & Related papers (2025-02-15T07:43:43Z) - Artificial Intelligence in Spectroscopy: Advancing Chemistry from Prediction to Generation and Beyond [38.32974480709081]
The rapid advent of machine learning (ML) and artificial intelligence (AI) has catalyzed major transformations in chemistry.
The application of these methods to spectroscopic and spectrometric data, referred to as Spectroscopy Machine Learning (SpectraML), remains relatively underexplored.
We provide a unified review of SpectraML, systematically examining state-of-the-art approaches for both forward tasks and inverse tasks.
arXiv Detail & Related papers (2025-02-14T04:07:25Z) - Trust at Your Own Peril: A Mixed Methods Exploration of the Ability of Large Language Models to Generate Expert-Like Systems Engineering Artifacts and a Characterization of Failure Modes [0.0]
We present results from an empirical exploration, where a human expert-generated SE artifact was taken as a benchmark.
We then adopted a two-fold mixed-methods approach to compare AI generated artifacts against the benchmark.
We find that while the two-material appear very similar, AI generated artifacts exhibit serious failure modes that could be difficult to detect.
arXiv Detail & Related papers (2025-02-13T17:05:18Z) - Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
Large language models (LLMs) generate content that can undermine trust in online discourse.
Current methods often focus on binary classification, failing to address the complexities of real-world scenarios like human-LLM collaboration.
To move beyond binary classification and address these challenges, we propose a new paradigm for detecting LLM-generated content.
arXiv Detail & Related papers (2024-10-18T08:14:10Z) - Automating Knowledge Discovery from Scientific Literature via LLMs: A Dual-Agent Approach with Progressive Ontology Prompting [59.97247234955861]
We introduce a novel framework based on large language models (LLMs) that combines a progressive prompting algorithm with a dual-agent system, named LLM-Duo.
Our method identifies 2,421 interventions from 64,177 research articles in the speech-language therapy domain.
arXiv Detail & Related papers (2024-08-20T16:42:23Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Expanding Horizons in HCI Research Through LLM-Driven Qualitative
Analysis [3.5253513747455303]
We introduce a new approach to qualitative analysis in HCI using Large Language Models (LLMs)
Our findings indicate that LLMs not only match the efficacy of traditional analysis methods but also offer unique insights.
arXiv Detail & Related papers (2024-01-07T12:39:31Z) - A Reliable Knowledge Processing Framework for Combustion Science using
Foundation Models [0.0]
The study introduces an approach to process diverse combustion research data, spanning experimental studies, simulations, and literature.
The developed approach minimizes computational and economic expenses while optimizing data privacy and accuracy.
The framework consistently delivers accurate domain-specific responses with minimal human oversight.
arXiv Detail & Related papers (2023-12-31T17:15:25Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when relying on their internal knowledge.
Retrieval-augmented LLMs have emerged as a potential solution to ground LLMs in external knowledge.
arXiv Detail & Related papers (2023-10-31T04:37:57Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Alchemy: A structured task distribution for meta-reinforcement learning [52.75769317355963]
We introduce a new benchmark for meta-RL research, which combines structural richness with structural transparency.
Alchemy is a 3D video game, which involves a latent causal structure that is resampled procedurally from episode to episode.
We evaluate a pair of powerful RL agents on Alchemy and present an in-depth analysis of one of these agents.
arXiv Detail & Related papers (2021-02-04T23:40:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.