Machine Learning for Phase Estimation in Satellite-to-Earth Quantum Communication
- URL: http://arxiv.org/abs/2502.09920v1
- Date: Fri, 14 Feb 2025 05:07:59 GMT
- Title: Machine Learning for Phase Estimation in Satellite-to-Earth Quantum Communication
- Authors: Nathan K Long, Robert Malaney, Kenneth J Grant,
- Abstract summary: A global continuous-variable quantum key distribution (CV-QKD) network can be established using a series of satellite-to-Earth channels.
The speed and accuracy of the signal phase error estimation algorithm are vital to practical CV-QKD implementation.
- Score: 0.24578723416255752
- License:
- Abstract: A global continuous-variable quantum key distribution (CV-QKD) network can be established using a series of satellite-to-Earth channels. Increased performance in such a network is provided by performing coherent measurement of the optical quantum signals using a real local oscillator, calibrated locally by encoding known information on transmitted reference pulses and using signal phase error estimation algorithms. The speed and accuracy of the signal phase error estimation algorithm are vital to practical CV-QKD implementation. Our work provides a framework to analyze long short-term memory neural network (NN) architecture parameterization, with respect to the quantum Cram\'er-Rao uncertainty bound of the signal phase error estimation, with a focus on reducing the model complexity. More specifically, we demonstrate that signal phase error estimation can be achieved using a low-complexity NN architecture, without significantly sacrificing accuracy. Our results significantly improve the real-time performance of practical CV-QKD systems deployed over satellite-to-Earth channels, thereby contributing to the ongoing development of the Quantum Internet.
Related papers
- Benchmarking Quantum Convolutional Neural Networks for Signal Classification in Simulated Gamma-Ray Burst Detection [29.259008600842517]
This study evaluates the use of Quantum Convolutional Neural Networks (QCNNs) for identifying signals resembling Gamma-Ray Bursts (GRBs)
We implement a hybrid quantum-classical machine learning technique using the Qiskit framework, with the QCNNs trained on a quantum simulator.
QCNNs showed robust performance on time-series datasets, successfully detecting GRB signals with high precision.
arXiv Detail & Related papers (2025-01-28T16:07:12Z) - Error-tolerant quantum convolutional neural networks for symmetry-protected topological phases [0.0]
Quantum neural networks based on parametrized quantum circuits, measurements and feed-forward can process large amounts of quantum data.
We construct quantum convolutional neural networks (QCNNs) that can recognize different symmetry-protected topological phases.
We show that the QCNN output is robust against symmetry-breaking errors below a threshold error probability.
arXiv Detail & Related papers (2023-07-07T16:47:02Z) - Phase Correction using Deep Learning for Satellite-to-Ground CV-QKD [0.5156484100374059]
We introduce a new method for estimating phase corrections for an RLO by using only intensity measurements from RPs as input to a convolutional neural network.
We show that the phase correction accuracy needed to provide for non-zero secure key rates through satellite-to-ground channels is achieved by our intensity-only measurements.
arXiv Detail & Related papers (2023-05-30T04:21:27Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
In this paper, we investigate signal detection in multiple-input-multiple-output (MIMO) communication systems with hardware impairments.
It is difficult to train a deep neural network (DNN) with limited pilot signals, hindering its practical applications.
We design an efficient message passing based Bayesian signal detector, leveraging the unitary approximate message passing (UAMP) algorithm.
arXiv Detail & Related papers (2022-10-08T04:32:58Z) - Green, Quantized Federated Learning over Wireless Networks: An
Energy-Efficient Design [68.86220939532373]
The finite precision level is captured through the use of quantized neural networks (QNNs) that quantize weights and activations in fixed-precision format.
The proposed FL framework can reduce energy consumption until convergence by up to 70% compared to a baseline FL algorithm.
arXiv Detail & Related papers (2022-07-19T16:37:24Z) - Quantum Compressive Sensing: Mathematical Machinery, Quantum Algorithms,
and Quantum Circuitry [10.286119086329762]
Compressive sensing is a protocol that facilitates reconstruction of large signals from relatively few measurements.
Recent efforts in the literature consider instead a data-driven approach, training tensor networks to learn the structure of signals of interest.
We present an alternative "quantum" protocol, in which the state of the tensor network is a quantum state over a set of entangled qubits.
arXiv Detail & Related papers (2022-04-27T16:20:28Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Use of a Local Local Oscillator for the Satellite-to-Earth Channel [0.0]
Continuous variable quantum key distribution (CV-QKD) offers information-theoretic secure key sharing between two parties.
The sharing of a phase reference frame is an essential requirement for coherent detection in CV-QKD.
We develop a new noise model of a current state-of-the-art LLO scheme in the context of the satellite-to-Earth channel.
arXiv Detail & Related papers (2020-10-19T11:39:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.