Error-tolerant quantum convolutional neural networks for symmetry-protected topological phases
- URL: http://arxiv.org/abs/2307.03711v2
- Date: Wed, 18 Sep 2024 11:40:12 GMT
- Title: Error-tolerant quantum convolutional neural networks for symmetry-protected topological phases
- Authors: Petr Zapletal, Nathan A. McMahon, Michael J. Hartmann,
- Abstract summary: Quantum neural networks based on parametrized quantum circuits, measurements and feed-forward can process large amounts of quantum data.
We construct quantum convolutional neural networks (QCNNs) that can recognize different symmetry-protected topological phases.
We show that the QCNN output is robust against symmetry-breaking errors below a threshold error probability.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The analysis of noisy quantum states prepared on current quantum computers is getting beyond the capabilities of classical computing. Quantum neural networks based on parametrized quantum circuits, measurements and feed-forward can process large amounts of quantum data to reduce measurement and computational costs of detecting non-local quantum correlations. The tolerance of errors due to decoherence and gate infidelities is a key requirement for the application of quantum neural networks on near-term quantum computers. Here we construct quantum convolutional neural networks (QCNNs) that can, in the presence of incoherent errors, recognize different symmetry-protected topological phases of generalized cluster-Ising Hamiltonians from one another as well as from topologically trivial phases. Using matrix product state simulations, we show that the QCNN output is robust against symmetry-breaking errors below a threshold error probability and against all symmetry-preserving errors provided the error channel is invertible. This is in contrast to string order parameters and the output of previously designed QCNNs, which vanish in the presence of any symmetry-breaking errors. To facilitate the implementation of the QCNNs on near-term quantum computers, the QCNN circuits can be shortened from logarithmic to constant depth in system size by performing a large part of the computation in classical post-processing. These constant-depth QCNNs reduce sample complexity exponentially with system size in comparison to the direct sampling using local Pauli measurements.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Network Tomography [7.788995634397122]
We provide an overview of Quantum Network Tomography (QNT) and its initial results for characterizing quantum star networks.
We apply a previously defined QNT protocol for estimating bit-flip channels to estimate depolarizing channels.
We analyze the performance of our estimators numerically by assessing the Quantum Cramer-Rao Bound (QCRB) and the Mean Square Error (MSE) in the finite sample regime.
arXiv Detail & Related papers (2024-05-18T21:24:52Z) - Splitting and Parallelizing of Quantum Convolutional Neural Networks for
Learning Translationally Symmetric Data [0.0]
We propose a novel architecture called split-parallelizing QCNN (sp-QCNN)
By splitting the quantum circuit based on translational symmetry, the sp-QCNN can substantially parallelize the conventional QCNN without increasing the number of qubits.
We show that the sp-QCNN can achieve comparable classification accuracy to the conventional QCNN while considerably reducing the measurement resources required.
arXiv Detail & Related papers (2023-06-12T18:00:08Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Realizing Quantum Convolutional Neural Networks on a Superconducting
Quantum Processor to Recognize Quantum Phases [2.1465372441653354]
Quantum neural networks tailored to recognize specific features of quantum states by combining unitary operations, measurements and feedforward promise to require fewer measurements and to tolerate errors.
We realize a quantum convolutional neural network (QCNN) on a 7-qubit superconducting quantum processor to identify symmetry-protected topological phases of a spin model characterized by a non-zero string order parameter.
We find that, despite being composed of finite-fidelity gates itself, the QCNN recognizes the topological phase with higher fidelity than direct measurements of the string order parameter for the prepared states.
arXiv Detail & Related papers (2021-09-13T12:32:57Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Branching Quantum Convolutional Neural Networks [0.0]
Small-scale quantum computers are already showing potential gains in learning tasks on large quantum and very large classical data sets.
We present a generalization of QCNN, the branching quantum convolutional neural network, or bQCNN, with substantially higher expressibility.
arXiv Detail & Related papers (2020-12-28T19:00:03Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.