ManiTrend: Bridging Future Generation and Action Prediction with 3D Flow for Robotic Manipulation
- URL: http://arxiv.org/abs/2502.10028v1
- Date: Fri, 14 Feb 2025 09:13:57 GMT
- Title: ManiTrend: Bridging Future Generation and Action Prediction with 3D Flow for Robotic Manipulation
- Authors: Yuxin He, Qiang Nie,
- Abstract summary: 3D flow represents the motion trend of 3D particles within a scene.
ManiTrend is a unified framework that models the dynamics of 3D particles, vision observations and manipulation actions.
Our method achieves state-of-the-art performance with high efficiency.
- Score: 11.233768932957771
- License:
- Abstract: Language-conditioned manipulation is a vital but challenging robotic task due to the high-level abstraction of language. To address this, researchers have sought improved goal representations derived from natural language. In this paper, we highlight 3D flow - representing the motion trend of 3D particles within a scene - as an effective bridge between language-based future image generation and fine-grained action prediction. To this end, we develop ManiTrend, a unified framework that models the dynamics of 3D particles, vision observations and manipulation actions with a causal transformer. Within this framework, features for 3D flow prediction serve as additional conditions for future image generation and action prediction, alleviating the complexity of pixel-wise spatiotemporal modeling and providing seamless action guidance. Furthermore, 3D flow can substitute missing or heterogeneous action labels during large-scale pretraining on cross-embodiment demonstrations. Experiments on two comprehensive benchmarks demonstrate that our method achieves state-of-the-art performance with high efficiency. Our code and model checkpoints will be available upon acceptance.
Related papers
- G3Flow: Generative 3D Semantic Flow for Pose-aware and Generalizable Object Manipulation [65.86819811007157]
We present G3Flow, a novel framework that constructs real-time semantic flow, a dynamic, object-centric 3D representation by leveraging foundation models.
Our approach uniquely combines 3D generative models for digital twin creation, vision foundation models for semantic feature extraction, and robust pose tracking for continuous semantic flow updates.
Our results demonstrate the effectiveness of G3Flow in enhancing real-time dynamic semantic feature understanding for robotic manipulation policies.
arXiv Detail & Related papers (2024-11-27T14:17:43Z) - GaussianPrediction: Dynamic 3D Gaussian Prediction for Motion Extrapolation and Free View Synthesis [71.24791230358065]
We introduce a novel framework that empowers 3D Gaussian representations with dynamic scene modeling and future scenario synthesis.
GaussianPrediction can forecast future states from any viewpoint, using video observations of dynamic scenes.
Our framework shows outstanding performance on both synthetic and real-world datasets, demonstrating its efficacy in predicting and rendering future environments.
arXiv Detail & Related papers (2024-05-30T06:47:55Z) - Interactive3D: Create What You Want by Interactive 3D Generation [13.003964182554572]
We introduce Interactive3D, an innovative framework for interactive 3D generation that grants users precise control over the generative process.
Our experiments demonstrate that Interactive3D markedly improves the controllability and quality of 3D generation.
arXiv Detail & Related papers (2024-04-25T11:06:57Z) - SUGAR: Pre-training 3D Visual Representations for Robotics [85.55534363501131]
We introduce a novel 3D pre-training framework for robotics named SUGAR.
SUGAR captures semantic, geometric and affordance properties of objects through 3D point clouds.
We show that SUGAR's 3D representation outperforms state-of-the-art 2D and 3D representations.
arXiv Detail & Related papers (2024-04-01T21:23:03Z) - 3D-VLA: A 3D Vision-Language-Action Generative World Model [68.0388311799959]
Recent vision-language-action (VLA) models rely on 2D inputs, lacking integration with the broader realm of the 3D physical world.
We propose 3D-VLA by introducing a new family of embodied foundation models that seamlessly link 3D perception, reasoning, and action.
Our experiments on held-in datasets demonstrate that 3D-VLA significantly improves the reasoning, multimodal generation, and planning capabilities in embodied environments.
arXiv Detail & Related papers (2024-03-14T17:58:41Z) - L3GO: Language Agents with Chain-of-3D-Thoughts for Generating
Unconventional Objects [53.4874127399702]
We propose a language agent with chain-of-3D-thoughts (L3GO), an inference-time approach that can reason about part-based 3D mesh generation.
We develop a new benchmark, Unconventionally Feasible Objects (UFO), as well as SimpleBlenv, a wrapper environment built on top of Blender.
Our approach surpasses the standard GPT-4 and other language agents for 3D mesh generation on ShapeNet.
arXiv Detail & Related papers (2024-02-14T09:51:05Z) - FMGS: Foundation Model Embedded 3D Gaussian Splatting for Holistic 3D Scene Understanding [11.118857208538039]
We present Foundation Model Embedded Gaussian Splatting (S), which incorporates vision-language embeddings of foundation models into 3D Gaussian Splatting (GS)
Results demonstrate remarkable multi-view semantic consistency, facilitating diverse downstream tasks, beating state-of-the-art methods by 10.2 percent on open-vocabulary language-based object detection.
This research explores the intersection of vision, language, and 3D scene representation, paving the way for enhanced scene understanding in uncontrolled real-world environments.
arXiv Detail & Related papers (2024-01-03T20:39:02Z) - FutureHuman3D: Forecasting Complex Long-Term 3D Human Behavior from Video Observations [26.693664045454526]
We present a generative approach to forecast long-term future human behavior in 3D, requiring only weak supervision from readily available 2D human action data.
We jointly predict high-level coarse action labels together with their low-level fine-grained realizations as characteristic 3D human poses.
Our experiments demonstrate the complementary nature of joint action and 3D pose prediction.
arXiv Detail & Related papers (2022-11-25T18:59:53Z) - LocATe: End-to-end Localization of Actions in 3D with Transformers [91.28982770522329]
LocATe is an end-to-end approach that jointly localizes and recognizes actions in a 3D sequence.
Unlike transformer-based object-detection and classification models which consider image or patch features as input, LocATe's transformer model is capable of capturing long-term correlations between actions in a sequence.
We introduce a new, challenging, and more realistic benchmark dataset, BABEL-TAL-20 (BT20), where the performance of state-of-the-art methods is significantly worse.
arXiv Detail & Related papers (2022-03-21T03:35:32Z) - Hindsight for Foresight: Unsupervised Structured Dynamics Models from
Physical Interaction [24.72947291987545]
Key challenge for an agent learning to interact with the world is to reason about physical properties of objects.
We propose a novel approach for modeling the dynamics of a robot's interactions directly from unlabeled 3D point clouds and images.
arXiv Detail & Related papers (2020-08-02T11:04:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.