The state of a quantum system is not a complete description for retrodiction
- URL: http://arxiv.org/abs/2502.10030v1
- Date: Fri, 14 Feb 2025 09:17:32 GMT
- Title: The state of a quantum system is not a complete description for retrodiction
- Authors: Mingxuan Liu, Ge Bai, Valerio Scarani,
- Abstract summary: A mixed quantum state can be taken as capturing an unspecified form of ignorance; or as describing the lack of knowledge about the true pure state of the system.
We show that prior beliefs for inferring the past state from later observations ("retrodiction"), they lead to different updated beliefs.
- Score: 4.639798718915138
- License:
- Abstract: A mixed quantum state can be taken as capturing an unspecified form of ignorance; or as describing the lack of knowledge about the true pure state of the system ("proper mixture"); or as arising from entanglement with another system that has been disregarded ("improper mixture"). These different views yield identical density matrices and therefore identical predictions for future measurements. But when used as prior beliefs for inferring the past state from later observations ("retrodiction"), they lead to different updated beliefs. This is a purely quantum feature of Bayesian agency. Based on this observation, we establish a framework for retrodicting on any quantum belief and we prove a necessary and sufficient condition for the equivalence of beliefs. We also illustrate how these differences have operational consequences in quantum state recovery.
Related papers
- Conditioning through indifference in quantum mechanics [0.0]
We look at how to describe the uncertainty about a quantum system's state conditional on executing such measurements.
We show that by exploiting the interplay between desirability, coherence and indifference, a general rule for conditioning can be derived.
arXiv Detail & Related papers (2025-02-10T08:27:02Z) - Quantum Non-Demolition Measurements and Leggett-Garg inequality [0.0]
Quantum non-demolition measurements define a non-invasive protocol to extract information from a quantum system.
This protocol leads to a quasi-probability distribution for the measured observable outcomes, which can be negative.
We show that there are situations in which Leggett-Garg inequalities are satisfied even if the macrorealism condition is violated.
arXiv Detail & Related papers (2024-07-31T18:04:51Z) - A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - Measurement-Device-Independent Detection of Beyond-Quantum State [53.64687146666141]
We propose a measurement-device-independent (MDI) test for beyond-quantum state detection.
We discuss the importance of tomographic completeness of the input sets to the detection.
arXiv Detail & Related papers (2023-12-11T06:40:13Z) - The measurement postulates of quantum mechanics are not redundant [0.0]
Masanes, Galley and M"uller argue that the measurement postulates of non-relativistic quantum mechanics follow from the structural postulates.
We refute their conclusion, giving explicit examples of non-quantum measurement and state update rules.
arXiv Detail & Related papers (2023-07-12T14:30:36Z) - A Quantum Theory with Non-collapsing Measurements [0.0]
A collapse-free version of quantum theory is introduced to study the role of the projection postulate.
We assume "passive" measurements that do not update quantum states while measurement outcomes still occur probabilistically.
The resulting quantum-like theory has only one type of dynamics, namely unitary evolution.
arXiv Detail & Related papers (2023-03-23T16:32:29Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - The power of noisy quantum states and the advantage of resource dilution [62.997667081978825]
Entanglement distillation allows to convert noisy quantum states into singlets.
We show that entanglement dilution can increase the resilience of shared quantum states to local noise.
arXiv Detail & Related papers (2022-10-25T17:39:29Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.