ORI: O Routing Intelligence
- URL: http://arxiv.org/abs/2502.10051v2
- Date: Mon, 17 Feb 2025 15:30:22 GMT
- Title: ORI: O Routing Intelligence
- Authors: Ahmad Shadid, Rahul Kumar, Mohit Mayank,
- Abstract summary: Single large language models (LLMs) often fall short when faced with the ever-growing range of tasks.<n>We propose ORI (O Routing Intelligence), a dynamic framework that leverages a set of LLMs.<n>By intelligently routing queries, ORI outperforms the strongest individual models by up to 2.7 points on MMLU and 1.8 points on MuSR.
- Score: 0.7493096930372414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single large language models (LLMs) often fall short when faced with the ever-growing range of tasks, making a single-model approach insufficient. We address this challenge by proposing ORI (O Routing Intelligence), a dynamic framework that leverages a set of LLMs. By intelligently routing incoming queries to the most suitable model, ORI not only improves task-specific accuracy, but also maintains efficiency. Comprehensive evaluations across diverse benchmarks demonstrate consistent accuracy gains while controlling computational overhead. By intelligently routing queries, ORI outperforms the strongest individual models by up to 2.7 points on MMLU and 1.8 points on MuSR, ties the top performance on ARC, and on BBH. These results underscore the benefits of a multi-model strategy and demonstrate how ORI's adaptive architecture can more effectively handle diverse tasks, offering a scalable, high-performance solution for a system of multiple large language models.
Related papers
- RCR-Router: Efficient Role-Aware Context Routing for Multi-Agent LLM Systems with Structured Memory [57.449129198822476]
RCR is a role-aware context routing framework for multi-agent large language model (LLM) systems.<n>It dynamically selects semantically relevant memory subsets for each agent based on its role and task stage.<n>A lightweight scoring policy guides memory selection, and agent outputs are integrated into a shared memory store.
arXiv Detail & Related papers (2025-08-06T21:59:34Z) - Dynamic Acoustic Model Architecture Optimization in Training for ASR [51.21112094223223]
DMAO is an architecture optimization framework that employs a grow-and-drop strategy to automatically reallocate parameters during training.<n>We evaluate DMAO through experiments with CTC onSpeech, TED-LIUM-v2 and Switchboard datasets.
arXiv Detail & Related papers (2025-06-16T07:47:34Z) - Router-R1: Teaching LLMs Multi-Round Routing and Aggregation via Reinforcement Learning [12.878608250420832]
We present textbf generalization-R1, a reinforcement learning framework that formulates multi-LLM routing and aggregation as a sequential decision process.<n>To facilitate learning, we employ a lightweight rule-based reward comprising format rewards, final outcome rewards, and a novel cost reward for optimizing the balance between performance and cost.
arXiv Detail & Related papers (2025-06-10T17:56:45Z) - Towards Efficient Multi-LLM Inference: Characterization and Analysis of LLM Routing and Hierarchical Techniques [14.892995952768352]
Language Models (LMs) have excelled at tasks like text generation, summarization, and question answering.<n>Their inference remains computationally expensive and energy intensive in settings with limited hardware, power, or bandwidth.<n>Recent approaches have introduced multi LLM intelligent model selection strategies that dynamically allocate computational resources based on query complexity.
arXiv Detail & Related papers (2025-06-06T23:13:08Z) - Route-and-Reason: Scaling Large Language Model Reasoning with Reinforced Model Router [9.580226379350737]
Multi-step reasoning has proven essential for enhancing the problem-solving capabilities of Large Language Models.<n>Yet, many reasoning steps are relatively simple and can be handled by more efficient smaller-scale language models.<n>We propose R2-Reasoner, a novel framework that enables collaborative reasoning across heterogeneous LLMs.
arXiv Detail & Related papers (2025-06-06T09:18:56Z) - Query Routing for Retrieval-Augmented Language Models [38.05904245087491]
Retrieval-Augmented Generation (RAG) significantly improves the performance of Large Language Models (LLMs) on knowledge-intensive tasks.<n>We observe that external documents dynamically affect LLM's ability to answer queries, while existing routing methods exhibit suboptimal performance in RAG scenarios.<n>We propose RAG, a parametric RAG-aware routing design, which leverages document embeddings and RAG capability embeddings with contrastive learning to capture knowledge representation shifts.
arXiv Detail & Related papers (2025-05-29T03:44:56Z) - Learning to Route Queries Across Knowledge Bases for Step-wise Retrieval-Augmented Reasoning [60.84901522792042]
Multimodal Retrieval-Augmented Generation (MRAG) has shown promise in mitigating hallucinations in Multimodal Large Language Models (MLLMs)<n>We propose R1, a novel MRAG framework that learns to decide when and where to retrieve knowledge based on the evolving reasoning state.<n>R1- can adaptively and effectively leverage diverse KBs, reducing unnecessary retrievals and improving both efficiency and accuracy.
arXiv Detail & Related papers (2025-05-28T08:17:57Z) - LightRouter: Towards Efficient LLM Collaboration with Minimal Overhead [19.573553157421774]
Light is a novel framework designed to systematically select and integrate a small subset of LLMs from a larger pool.<n>Experiments demonstrate that Light matches or outperforms widely-used ensemble baselines, achieving up to a 25% improvement in accuracy.<n>This work introduces a practical approach for efficient LLM selection and provides valuable insights into optimal strategies for model combination.
arXiv Detail & Related papers (2025-05-22T04:46:04Z) - Review, Refine, Repeat: Understanding Iterative Decoding of AI Agents with Dynamic Evaluation and Selection [71.92083784393418]
Inference-time methods such as Best-of-N (BON) sampling offer a simple yet effective alternative to improve performance.
We propose Iterative Agent Decoding (IAD) which combines iterative refinement with dynamic candidate evaluation and selection guided by a verifier.
arXiv Detail & Related papers (2025-04-02T17:40:47Z) - Reinforced Model Merging [53.84354455400038]
We present an innovative framework termed Reinforced Model Merging (RMM), which encompasses an environment and agent tailored for merging tasks.
By utilizing data subsets during the evaluation process, we addressed the bottleneck in the reward feedback phase, thereby accelerating RMM by up to 100 times.
arXiv Detail & Related papers (2025-03-27T08:52:41Z) - Towards Robust Universal Information Extraction: Benchmark, Evaluation, and Solution [66.11004226578771]
Existing robust benchmark datasets have two key limitations.
They generate only a limited range of perturbations for a single Information Extraction (IE) task.
Considering the powerful generation capabilities of Large Language Models (LLMs), we introduce a new benchmark dataset for Robust UIE, called RUIE-Bench.
We show that training with only textbf15% of the data leads to an average textbf7.5% relative performance improvement across three IE tasks.
arXiv Detail & Related papers (2025-03-05T05:39:29Z) - SEKI: Self-Evolution and Knowledge Inspiration based Neural Architecture Search via Large Language Models [11.670056503731905]
We introduce SEKI, a novel large language model (LLM)-based neural architecture search (NAS) method.
Inspired by the chain-of-thought (CoT) paradigm in modern LLMs, SEKI operates in two key stages: self-evolution and knowledge distillation.
arXiv Detail & Related papers (2025-02-27T09:17:49Z) - More is not always better? Enhancing Many-Shot In-Context Learning with Differentiated and Reweighting Objectives [50.772462704559345]
We introduce DrICL, a novel optimization method that enhances model performance through Differentiated Learning and advantage-based Reweighting objectives.<n>Globally, DrICL utilizes differentiated learning to optimize the NLL objective, ensuring that many-shot performance surpasses zero-shot levels.<n>We develop the Many-Shot ICL Benchmark (ICL-50)-a large-scale benchmark of 50 tasks that cover shot numbers from 1 to 350 within sequences of up to 8,000 tokens-for fine-tuning purposes.
arXiv Detail & Related papers (2025-01-07T14:57:08Z) - MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
multimodal large language models (MLLMs) have shown significant potential in a broad range of multimodal tasks.<n>Existing instruction-tuning datasets only provide phrase-level answers without any intermediate rationales.<n>We introduce a scalable and cost-effective method to construct a large-scale multimodal instruction-tuning dataset with rich intermediate rationales.
arXiv Detail & Related papers (2024-12-06T18:14:24Z) - Dspy-based Neural-Symbolic Pipeline to Enhance Spatial Reasoning in LLMs [29.735465300269993]
Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks, yet they often struggle with spatial reasoning.<n>This paper presents a novel neural-symbolic framework that enhances LLMs' spatial reasoning abilities through iterative feedback between LLMs and Answer Set Programming (ASP)<n>We evaluate our approach on two benchmark datasets: StepGame and SparQA.
arXiv Detail & Related papers (2024-11-27T18:04:05Z) - Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization [65.64108848398696]
We introduce a preference optimization process to enhance the multimodal reasoning capabilities of MLLMs.
We develop a simple yet effective method, termed Mixed Preference Optimization (MPO), which boosts multimodal CoT performance.
Our model, InternVL2-8B-MPO, achieves an accuracy of 67.0 on MathVista, outperforming InternVL2-8B by 8.7 points and achieving performance comparable to the 10x larger InternVL2-76B.
arXiv Detail & Related papers (2024-11-15T18:59:27Z) - SelectLLM: Query-Aware Efficient Selection Algorithm for Large Language Models [8.558834738072363]
Large language models (LLMs) have seen widespread adoption due to their remarkable performance across various applications.<n>These individual LLMs show limitations in generalization and performance on complex tasks due to inherent training biases, model size constraints, and the quality or diversity of pre-training datasets.<n>We introduce SelectLLM, which efficiently directs input queries to the most suitable subset of LLMs from a large pool.
arXiv Detail & Related papers (2024-08-16T06:11:21Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
We propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions.
Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, Self-Exploring Language Models (SELM) significantly boosts the performance on instruction-following benchmarks.
arXiv Detail & Related papers (2024-05-29T17:59:07Z) - Benchmark Self-Evolving: A Multi-Agent Framework for Dynamic LLM
Evaluation [51.99752147380505]
This paper presents a benchmark self-evolving framework to dynamically evaluate Large Language Models (LLMs)
We utilize a multi-agent system to manipulate the context or question of original instances, reframing new evolving instances with high confidence.
Our framework widens performance discrepancies both between different models and within the same model across various tasks.
arXiv Detail & Related papers (2024-02-18T03:40:06Z) - Large Language Model Routing with Benchmark Datasets [40.42044096089315]
No single model typically achieves the best accuracy in all tasks and use cases.
We propose a new formulation for the problem, in which benchmark datasets are repurposed to learn a "router" model for this selection.
We show that this problem can be reduced to a collection of binary classification tasks.
arXiv Detail & Related papers (2023-09-27T17:08:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.