Towards Empowerment Gain through Causal Structure Learning in Model-Based RL
- URL: http://arxiv.org/abs/2502.10077v1
- Date: Fri, 14 Feb 2025 10:59:09 GMT
- Title: Towards Empowerment Gain through Causal Structure Learning in Model-Based RL
- Authors: Hongye Cao, Fan Feng, Meng Fang, Shaokang Dong, Tianpei Yang, Jing Huo, Yang Gao,
- Abstract summary: We propose a novel framework, Empowerment through Causal Learning (ECL), to improve learning efficiency and controllability.
ECL operates by first training a causal dynamics model of the environment based on collected data.
We then maximize empowerment under the causal structure for exploration, simultaneously using data gathered through exploration to update causal dynamics model to be more controllable.
- Score: 35.933469787075
- License:
- Abstract: In Model-Based Reinforcement Learning (MBRL), incorporating causal structures into dynamics models provides agents with a structured understanding of the environments, enabling efficient decision. Empowerment as an intrinsic motivation enhances the ability of agents to actively control their environments by maximizing the mutual information between future states and actions. We posit that empowerment coupled with causal understanding can improve controllability, while enhanced empowerment gain can further facilitate causal reasoning in MBRL. To improve learning efficiency and controllability, we propose a novel framework, Empowerment through Causal Learning (ECL), where an agent with the awareness of causal dynamics models achieves empowerment-driven exploration and optimizes its causal structure for task learning. Specifically, ECL operates by first training a causal dynamics model of the environment based on collected data. We then maximize empowerment under the causal structure for exploration, simultaneously using data gathered through exploration to update causal dynamics model to be more controllable than dense dynamics model without causal structure. In downstream task learning, an intrinsic curiosity reward is included to balance the causality, mitigating overfitting. Importantly, ECL is method-agnostic and is capable of integrating various causal discovery methods. We evaluate ECL combined with 3 causal discovery methods across 6 environments including pixel-based tasks, demonstrating its superior performance compared to other causal MBRL methods, in terms of causal discovery, sample efficiency, and asymptotic performance.
Related papers
- ExAL: An Exploration Enhanced Adversarial Learning Algorithm [0.0]
We propose a novel Exploration-enhanced Adversarial Learning Algorithm (ExAL)
ExAL integrates exploration-driven mechanisms to discover perturbations that maximize impact on the model's decision boundary.
We evaluate the performance of ExAL on the MNIST Handwritten Digits and Blended Malware datasets.
arXiv Detail & Related papers (2024-11-24T15:37:29Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
Large pretrained models are showing increasingly better performance in reasoning and planning tasks.
We evaluate their ability to produce decision-making policies, either directly, by generating actions, or indirectly.
In environments with unfamiliar dynamics, we explore how fine-tuning LLMs with synthetic data can significantly improve their reward modeling capabilities.
arXiv Detail & Related papers (2024-10-08T03:12:57Z) - Fine-Grained Causal Dynamics Learning with Quantization for Improving Robustness in Reinforcement Learning [26.34622544479565]
Causal dynamics learning is a promising approach to enhancing robustness in reinforcement learning.
We propose a novel model that infers fine-grained causal structures and employs them for prediction.
arXiv Detail & Related papers (2024-06-05T13:13:58Z) - Exploring the limits of Hierarchical World Models in Reinforcement Learning [0.7499722271664147]
We describe a novel HMBRL framework and evaluate it thoroughly.
We construct hierarchical world models that simulate environment dynamics at various levels of temporal abstraction.
Unlike most goal-conditioned H(MB)RL approaches, it also leads to comparatively low dimensional abstract actions.
arXiv Detail & Related papers (2024-06-01T16:29:03Z) - Learning by Doing: An Online Causal Reinforcement Learning Framework
with Causal-Aware Policy [40.33036146207819]
We consider explicitly modeling the generation process of states with the graphical causal model.
We formulate the causal structure updating into the RL interaction process with active intervention learning of the environment.
arXiv Detail & Related papers (2024-02-07T14:09:34Z) - Building Minimal and Reusable Causal State Abstractions for
Reinforcement Learning [63.58935783293342]
Causal Bisimulation Modeling (CBM) is a method that learns the causal relationships in the dynamics and reward functions for each task to derive a minimal, task-specific abstraction.
CBM's learned implicit dynamics models identify the underlying causal relationships and state abstractions more accurately than explicit ones.
arXiv Detail & Related papers (2024-01-23T05:43:15Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Generalizing Goal-Conditioned Reinforcement Learning with Variational
Causal Reasoning [24.09547181095033]
Causal Graph is a structure built upon the relation between objects and events.
We propose a framework with theoretical performance guarantees that alternates between two steps.
Our performance improvement is attributed to the virtuous cycle of causal discovery, transition modeling, and policy training.
arXiv Detail & Related papers (2022-07-19T05:31:16Z) - Causal Dynamics Learning for Task-Independent State Abstraction [61.707048209272884]
We introduce Causal Dynamics Learning for Task-Independent State Abstraction (CDL)
CDL learns a theoretically proved causal dynamics model that removes unnecessary dependencies between state variables and the action.
A state abstraction can then be derived from the learned dynamics.
arXiv Detail & Related papers (2022-06-27T17:02:53Z) - Confounder Identification-free Causal Visual Feature Learning [84.28462256571822]
We propose a novel Confounder Identification-free Causal Visual Feature Learning (CICF) method, which obviates the need for identifying confounders.
CICF models the interventions among different samples based on front-door criterion, and then approximates the global-scope intervening effect upon the instance-level interventions.
We uncover the relation between CICF and the popular meta-learning strategy MAML, and provide an interpretation of why MAML works from the theoretical perspective.
arXiv Detail & Related papers (2021-11-26T10:57:47Z) - Reinforcement Learning through Active Inference [62.997667081978825]
We show how ideas from active inference can augment traditional reinforcement learning approaches.
We develop and implement a novel objective for decision making, which we term the free energy of the expected future.
We demonstrate that the resulting algorithm successfully exploration and exploitation, simultaneously achieving robust performance on several challenging RL benchmarks with sparse, well-shaped, and no rewards.
arXiv Detail & Related papers (2020-02-28T10:28:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.