論文の概要: NeuroXVocal: Detection and Explanation of Alzheimer's Disease through Non-invasive Analysis of Picture-prompted Speech
- arxiv url: http://arxiv.org/abs/2502.10108v1
- Date: Fri, 14 Feb 2025 12:09:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 18:06:34.668656
- Title: NeuroXVocal: Detection and Explanation of Alzheimer's Disease through Non-invasive Analysis of Picture-prompted Speech
- Title(参考訳): NeuroXVocal: 画像刺激音声の非侵襲的解析によるアルツハイマー病の検出と説明
- Authors: Nikolaos Ntampakis, Konstantinos Diamantaras, Ioanna Chouvarda, Magda Tsolaki, Vasileios Argyriou, Panagiotis Sarigianndis,
- Abstract要約: NeuroXVocalは、音声分析によってアルツハイマー病(AD)の可能性を分類し、説明する新しい二重成分システムである。
分類コンポーネント(Neuro)は、音声パターンと音声特徴をキャプチャする音響特徴、音声書き起こしから抽出したテキスト特徴、言語パターンを表す事前計算された埋め込みの3つの異なるデータストリームを処理する。
説明可能性コンポーネント(XVocal)は、大規模言語モデルとAD研究文献のドメイン固有の知識ベースを組み合わせた、検索・拡張生成(RAG)アプローチを実装している。
- 参考スコア(独自算出の注目度): 4.815952991777717
- License:
- Abstract: The early diagnosis of Alzheimer's Disease (AD) through non invasive methods remains a significant healthcare challenge. We present NeuroXVocal, a novel dual-component system that not only classifies but also explains potential AD cases through speech analysis. The classification component (Neuro) processes three distinct data streams: acoustic features capturing speech patterns and voice characteristics, textual features extracted from speech transcriptions, and precomputed embeddings representing linguistic patterns. These streams are fused through a custom transformer-based architecture that enables robust cross-modal interactions. The explainability component (XVocal) implements a Retrieval-Augmented Generation (RAG) approach, leveraging Large Language Models combined with a domain-specific knowledge base of AD research literature. This architecture enables XVocal to retrieve relevant clinical studies and research findings to generate evidence-based context-sensitive explanations of the acoustic and linguistic markers identified in patient speech. Using the IS2021 ADReSSo Challenge benchmark dataset, our system achieved state-of-the-art performance with 95.77% accuracy in AD classification, significantly outperforming previous approaches. The explainability component was qualitatively evaluated using a structured questionnaire completed by medical professionals, validating its clinical relevance. NeuroXVocal's unique combination of high-accuracy classification and interpretable, literature-grounded explanations demonstrates its potential as a practical tool for supporting clinical AD diagnosis.
- Abstract(参考訳): 非侵襲的方法によるアルツハイマー病(AD)の早期診断は、依然として重要な医療課題である。
本稿では,新しい二重成分システムであるNeuroXVocalについて述べる。
分類コンポーネント(Neuro)は、音声パターンと音声特徴をキャプチャする音響特徴、音声書き起こしから抽出したテキスト特徴、言語パターンを表す事前計算された埋め込みの3つの異なるデータストリームを処理する。
これらのストリームは、堅牢なクロスモーダルインタラクションを可能にするカスタムトランスフォーマーベースのアーキテクチャを通じて融合される。
説明可能性コンポーネント(XVocal)は、大規模言語モデルとAD研究文献のドメイン固有の知識ベースを組み合わせた、検索・拡張生成(RAG)アプローチを実装している。
このアーキテクチャにより、XVocalは関連する臨床研究や研究成果を検索し、患者音声で特定される音響的および言語的マーカーのエビデンスに基づく文脈依存的な説明を生成することができる。
IS2021 ADReSSo Challengeベンチマークデータセットを用いて,AD分類の95.77%の精度で最先端のパフォーマンスを達成した。
医療従事者が実施した構造化アンケートを用いて, 説明可能性成分の質的評価を行い, その臨床的妥当性を検証した。
NeuroXVocalの高精度分類と解釈可能な文献的説明を組み合わせたユニークな組み合わせは、臨床AD診断を支援するための実用的なツールとしての可能性を示している。
関連論文リスト
- Profiling Patient Transcript Using Large Language Model Reasoning Augmentation for Alzheimer's Disease Detection [4.961581278723015]
アルツハイマー病(AD)は認知症の主要な原因であり、徐々に音声や言語能力の低下が特徴である。
近年の深層学習は自発音声によるAD自動検出を容易にする。
各発話中のテキストパターンを,患者の言語的特徴をグローバルに把握せずに直接モデル化する。
論文 参考訳(メタデータ) (2024-09-19T07:58:07Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - Acoustic-Linguistic Features for Modeling Neurological Task Score in
Alzheimer's [1.290382979353427]
自然言語処理と機械学習はアルツハイマー病を確実に検出するための有望な技術を提供する。
我々は,10種類の線形回帰モデルの性能を比較し,比較した。
与えられたタスクに対して,手作りの言語的特徴は音響的特徴や学習的特徴よりも重要であることがわかった。
論文 参考訳(メタデータ) (2022-09-13T15:35:31Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
音声ベースの自動ADスクリーニングシステムは、他の臨床スクリーニング技術に代わる非侵襲的でスケーラブルな代替手段を提供する。
専門的なデータの収集は、そのようなシステムを開発する際に、モデル選択と特徴学習の両方に不確実性をもたらす。
本稿では,BERT と Roberta の事前学習したテキストエンコーダのドメイン微調整の堅牢性向上のための特徴とモデルの組み合わせ手法について検討する。
論文 参考訳(メタデータ) (2022-06-28T05:09:01Z) - Conformer Based Elderly Speech Recognition System for Alzheimer's
Disease Detection [62.23830810096617]
アルツハイマー病(AD)の早期診断は、予防ケアがさらなる進行を遅らせるのに不可欠である。
本稿では,DementiaBank Pitt コーパスをベースとした最新のコンバータに基づく音声認識システムの開発について述べる。
論文 参考訳(メタデータ) (2022-06-23T12:50:55Z) - Multi-class versus One-class classifier in spontaneous speech analysis
oriented to Alzheimer Disease diagnosis [58.720142291102135]
本研究の目的は,音声信号から抽出した新しいバイオマーカーを用いて自動解析を行うことにより,ADの早期診断と重症度評価の改善に寄与することである。
外付け器とフラクタル次元の機能に関する情報を使用することで、システムの性能が向上する。
論文 参考訳(メタデータ) (2022-03-21T09:57:20Z) - Factored Attention and Embedding for Unstructured-view Topic-related
Ultrasound Report Generation [70.7778938191405]
本研究では,非構造的トピック関連超音波レポート生成のための新しい因子的注意・埋め込みモデル(FAE-Gen)を提案する。
提案したFAE-Genは主に2つのモジュール、すなわちビュー誘導因子の注意とトピック指向因子の埋め込みから構成されており、異なるビューで均質および不均一な形態的特徴を捉えている。
論文 参考訳(メタデータ) (2022-03-12T15:24:03Z) - Influence of ASR and Language Model on Alzheimer's Disease Detection [2.4698886064068555]
画像から参加者の音声記述を転写するために,SotA ASRシステムを用いて分析する。
本研究では,ASRから仮説を復号化するための言語モデルが欠如していることから,単語の非標準列を補正する言語モデルの影響について検討する。
提案システムは、韻律と声質に基づく音響と、最も一般的な単語の最初の出現に基づく語彙的特徴を組み合わせる。
論文 参考訳(メタデータ) (2021-09-20T10:41:39Z) - To BERT or Not To BERT: Comparing Speech and Language-based Approaches
for Alzheimer's Disease Detection [17.99855227184379]
自然言語処理と機械学習はアルツハイマー病(AD)を確実に検出するための有望な技術を提供する
最近のADReSSチャレンジデータセットにおいて、AD検出のための2つのアプローチのパフォーマンスを比較し、比較する。
認知障害検出における言語学の重要性を考えると,細調整BERTモデルはAD検出タスクにおいて特徴に基づくアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-07-26T04:50:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。