MonoForce: Learnable Image-conditioned Physics Engine
- URL: http://arxiv.org/abs/2502.10156v2
- Date: Wed, 19 Feb 2025 10:03:11 GMT
- Title: MonoForce: Learnable Image-conditioned Physics Engine
- Authors: Ruslan Agishev, Karel Zimmermann,
- Abstract summary: We propose a novel model for the prediction of robot trajectories on rough offroad terrain from the onboard camera images.
The proposed hybrid model integrates a black-box component that predicts robot-terrain interaction forces with a neural-symbolic layer.
The differentiability, in conjunction with the rapid simulation speed, makes the model well-suited for various applications.
- Score: 1.03590082373586
- License:
- Abstract: We propose a novel model for the prediction of robot trajectories on rough offroad terrain from the onboard camera images. This model enforces the laws of classical mechanics through a physics-aware neural symbolic layer while preserving the ability to learn from large-scale data as it is end-to-end differentiable. The proposed hybrid model integrates a black-box component that predicts robot-terrain interaction forces with a neural-symbolic layer. This layer includes a differentiable physics engine that computes the robot's trajectory by querying these forces at the points of contact with the terrain. As the proposed architecture comprises substantial geometrical and physics priors, the resulting model can also be seen as a learnable physics engine conditioned on real images that delivers $10^4$ trajectories per second. We argue and empirically demonstrate that this architecture reduces the sim-to-real gap and mitigates out-of-distribution sensitivity. The differentiability, in conjunction with the rapid simulation speed, makes the model well-suited for various applications including model predictive control, trajectory shooting, supervised and reinforcement learning or SLAM. The codes and data are publicly available.
Related papers
- Physics Encoded Blocks in Residual Neural Network Architectures for Digital Twin Models [2.8720819157502344]
This paper presents a generic approach based on a novel physics-encoded residual neural network architecture.
Our method combines physics blocks as mathematical operators from physics-based models with learning blocks comprising feed-forward layers.
Compared to conventional neural network-based methods, our method improves generalizability with substantially low data requirements.
arXiv Detail & Related papers (2024-11-18T11:58:20Z) - A Physics-embedded Deep Learning Framework for Cloth Simulation [6.8806198396336935]
This paper proposes a physics-embedded learning framework that directly encodes physical features of cloth simulation.
The framework can also integrate with other external forces and collision handling through either traditional simulators or sub neural networks.
arXiv Detail & Related papers (2024-03-19T15:21:00Z) - Physics-Encoded Graph Neural Networks for Deformation Prediction under
Contact [87.69278096528156]
In robotics, it's crucial to understand object deformation during tactile interactions.
We introduce a method using Physics-Encoded Graph Neural Networks (GNNs) for such predictions.
We've made our code and dataset public to advance research in robotic simulation and grasping.
arXiv Detail & Related papers (2024-02-05T19:21:52Z) - Physics-Based Rigid Body Object Tracking and Friction Filtering From RGB-D Videos [8.012771454339353]
We propose a novel approach for real-to-sim which tracks rigid objects in 3D from RGB-D images and infers physical properties of the objects.
We demonstrate and evaluate our approach on a real-world dataset.
arXiv Detail & Related papers (2023-09-27T14:46:01Z) - Context-Conditional Navigation with a Learning-Based Terrain- and Robot-Aware Dynamics Model [11.800678688260081]
We develop a novel probabilistic, terrain- and robot-aware forward dynamics model, termed TRADYN.
We evaluate our method in a simulated 2D navigation setting with a unicycle-like robot and different terrain layouts with spatially varying friction coefficients.
arXiv Detail & Related papers (2023-07-18T12:42:59Z) - Differentiable Physics Simulation of Dynamics-Augmented Neural Objects [40.587385809005355]
We present a differentiable pipeline for simulating the motion of objects that represent their geometry as a continuous density field parameterized as a deep network.
We estimate the dynamical properties of the object, including its mass, center of mass, and inertia matrix.
This allows a robot to autonomously build object models that are visually and dynamically accurate from still images and videos of objects in motion.
arXiv Detail & Related papers (2022-10-17T20:37:46Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored.
We propose a new method combining both methodologies based on a new Neural Differential Equation model.
Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters.
arXiv Detail & Related papers (2022-07-21T12:11:18Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Dynamic Visual Reasoning by Learning Differentiable Physics Models from
Video and Language [92.7638697243969]
We propose a unified framework that can jointly learn visual concepts and infer physics models of objects from videos and language.
This is achieved by seamlessly integrating three components: a visual perception module, a concept learner, and a differentiable physics engine.
arXiv Detail & Related papers (2021-10-28T17:59:13Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Occlusion resistant learning of intuitive physics from videos [52.25308231683798]
Key ability for artificial systems is to understand physical interactions between objects, and predict future outcomes of a situation.
This ability, often referred to as intuitive physics, has recently received attention and several methods were proposed to learn these physical rules from video sequences.
arXiv Detail & Related papers (2020-04-30T19:35:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.