Exploring the Camera Bias of Person Re-identification
- URL: http://arxiv.org/abs/2502.10195v1
- Date: Fri, 14 Feb 2025 14:39:24 GMT
- Title: Exploring the Camera Bias of Person Re-identification
- Authors: Myungseo Song, Jin-Woo Park, Jong-Seok Lee,
- Abstract summary: We measure the camera bias of ReID models on unseen domains and reveal that camera bias becomes more pronounced under data distribution shifts.
As a debiasing method for unseen domain data, we revisit feature normalization on embedding vectors.
We show that this simple method is effective at reducing bias and show that it can be applied to detailed bias factors such as low-level image properties and body angle.
- Score: 18.605398174512295
- License:
- Abstract: We empirically investigate the camera bias of person re-identification (ReID) models. Previously, camera-aware methods have been proposed to address this issue, but they are largely confined to training domains of the models. We measure the camera bias of ReID models on unseen domains and reveal that camera bias becomes more pronounced under data distribution shifts. As a debiasing method for unseen domain data, we revisit feature normalization on embedding vectors. While the normalization has been used as a straightforward solution, its underlying causes and broader applicability remain unexplored. We analyze why this simple method is effective at reducing bias and show that it can be applied to detailed bias factors such as low-level image properties and body angle. Furthermore, we validate its generalizability across various models and benchmarks, highlighting its potential as a simple yet effective test-time postprocessing method for ReID. In addition, we explore the inherent risk of camera bias in unsupervised learning of ReID models. The unsupervised models remain highly biased towards camera labels even for seen domain data, indicating substantial room for improvement. Based on observations of the negative impact of camera-biased pseudo labels on training, we suggest simple training strategies to mitigate the bias. By applying these strategies to existing unsupervised learning algorithms, we show that significant performance improvements can be achieved with minor modifications.
Related papers
- ALBAR: Adversarial Learning approach to mitigate Biases in Action Recognition [52.537021302246664]
Action recognition models often suffer from background bias (i.e., inferring actions based on background cues) and foreground bias (i.e., relying on subject appearance)
We propose ALBAR, a novel adversarial training method that mitigates foreground and background biases without requiring specialized knowledge of the bias attributes.
We evaluate our method on established background and foreground bias protocols, setting a new state-of-the-art and strongly improving combined debiasing performance by over 12% on HMDB51.
arXiv Detail & Related papers (2025-01-31T20:47:06Z) - Utilizing Adversarial Examples for Bias Mitigation and Accuracy Enhancement [3.0820287240219795]
We propose a novel approach to mitigate biases in computer vision models by utilizing counterfactual generation and fine-tuning.
Our approach leverages a curriculum learning framework combined with a fine-grained adversarial loss to fine-tune the model using adversarial examples.
We validate our approach through both qualitative and quantitative assessments, demonstrating improved bias mitigation and accuracy compared to existing methods.
arXiv Detail & Related papers (2024-04-18T00:41:32Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
Deep neural networks might behave in a biased manner in many real-world scenarios.
Existing debiasing methods suffer from high costs in bias labeling or model re-training.
We propose a fast model debiasing framework (FMD) which offers an efficient approach to identify, evaluate and remove biases.
arXiv Detail & Related papers (2023-10-19T08:10:57Z) - Spuriosity Rankings: Sorting Data to Measure and Mitigate Biases [62.54519787811138]
We present a simple but effective method to measure and mitigate model biases caused by reliance on spurious cues.
We rank images within their classes based on spuriosity, proxied via deep neural features of an interpretable network.
Our results suggest that model bias due to spurious feature reliance is influenced far more by what the model is trained on than how it is trained.
arXiv Detail & Related papers (2022-12-05T23:15:43Z) - Rethinking Bias Mitigation: Fairer Architectures Make for Fairer Face
Recognition [107.58227666024791]
Face recognition systems are widely deployed in safety-critical applications, including law enforcement.
They exhibit bias across a range of socio-demographic dimensions, such as gender and race.
Previous works on bias mitigation largely focused on pre-processing the training data.
arXiv Detail & Related papers (2022-10-18T15:46:05Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z) - EnD: Entangling and Disentangling deep representations for bias
correction [7.219077740523682]
We propose EnD, a regularization strategy whose aim is to prevent deep models from learning unwanted biases.
In particular, we insert an "information bottleneck" at a certain point of the deep neural network, where we disentangle the information about the bias.
Experiments show that EnD effectively improves the generalization on unbiased test sets.
arXiv Detail & Related papers (2021-03-02T20:55:42Z) - Wide-angle Image Rectification: A Survey [86.36118799330802]
wide-angle images contain distortions that violate the assumptions underlying pinhole camera models.
Image rectification, which aims to correct these distortions, can solve these problems.
We present a detailed description and discussion of the camera models used in different approaches.
Next, we review both traditional geometry-based image rectification methods and deep learning-based methods.
arXiv Detail & Related papers (2020-10-30T17:28:40Z) - Camera On-boarding for Person Re-identification using Hypothesis
Transfer Learning [41.115022307850424]
We develop an efficient model adaptation approach using hypothesis transfer learning for person re-identification.
Our approach minimizes the effect of negative transfer by finding an optimal weighted combination of multiple source models for transferring the knowledge.
arXiv Detail & Related papers (2020-07-22T00:43:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.