論文の概要: AdaPTS: Adapting Univariate Foundation Models to Probabilistic Multivariate Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2502.10235v1
- Date: Fri, 14 Feb 2025 15:46:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 14:47:44.230122
- Title: AdaPTS: Adapting Univariate Foundation Models to Probabilistic Multivariate Time Series Forecasting
- Title(参考訳): AdaPTS: 確率的多変量時系列予測に一様ファンデーションモデルを適用する
- Authors: Abdelhakim Benechehab, Vasilii Feofanov, Giuseppe Paolo, Albert Thomas, Maurizio Filippone, Balázs Kégl,
- Abstract要約: 本稿では,機能間の複雑な依存関係を管理し,予測の不確実性を定量化するアダプタを提案する。
合成データセットと実世界のデータセットの両方で実施された実験により、アダプタの有効性が確認された。
私たちのフレームワークであるAdaPTSは、アダプタをモジュール的でスケーラブルで効果的なソリューションとして位置づけています。
- 参考スコア(独自算出の注目度): 10.899510048905926
- License:
- Abstract: Pre-trained foundation models (FMs) have shown exceptional performance in univariate time series forecasting tasks. However, several practical challenges persist, including managing intricate dependencies among features and quantifying uncertainty in predictions. This study aims to tackle these critical limitations by introducing adapters; feature-space transformations that facilitate the effective use of pre-trained univariate time series FMs for multivariate tasks. Adapters operate by projecting multivariate inputs into a suitable latent space and applying the FM independently to each dimension. Inspired by the literature on representation learning and partially stochastic Bayesian neural networks, we present a range of adapters and optimization/inference strategies. Experiments conducted on both synthetic and real-world datasets confirm the efficacy of adapters, demonstrating substantial enhancements in forecasting accuracy and uncertainty quantification compared to baseline methods. Our framework, AdaPTS, positions adapters as a modular, scalable, and effective solution for leveraging time series FMs in multivariate contexts, thereby promoting their wider adoption in real-world applications. We release the code at https://github.com/abenechehab/AdaPTS.
- Abstract(参考訳): 事前訓練された基礎モデル(FM)は、単変量時系列予測タスクにおいて例外的な性能を示した。
しかし、機能間の複雑な依存関係を管理し、予測の不確実性を定量化するなど、いくつかの実践的な課題が続いている。
本研究の目的は,多変量タスクにおいて,事前学習した単変量時系列FMを効果的に活用するための特徴空間変換を導入することで,これらの限界に対処することである。
適応器は多変量入力を適切な潜在空間に投影し、各次元に独立してFMを適用する。
表現学習と部分的に確率的ベイズニューラルネットワークに関する文献に触発されて、我々は様々なアダプタと最適化/推論戦略を提示した。
合成および実世界のデータセットで行った実験は、アダプタの有効性を確認し、ベースライン法と比較して予測精度と不確かさの定量化を著しく向上させた。
我々のフレームワークであるAdaPTSは、マルチ変数コンテキストにおける時系列FMを活用するためのモジュール的でスケーラブルで効果的なソリューションとしてアダプタを位置づけ、現実世界のアプリケーションで広く採用されている。
コードはhttps://github.com/abenechehab/AdaPTS.comで公開しています。
関連論文リスト
- Meta-Statistical Learning: Supervised Learning of Statistical Inference [59.463430294611626]
この研究は、大きな言語モデル(LLM)の成功を駆動するツールと原則が、分散レベルのタスクに取り組むために再利用可能であることを実証している。
本稿では,統計的推論タスクを教師付き学習問題として再構成するマルチインスタンス学習に触発されたメタ統計学習を提案する。
論文 参考訳(メタデータ) (2025-02-17T18:04:39Z) - Multi-SpaCE: Multi-Objective Subsequence-based Sparse Counterfactual Explanations for Multivariate Time Series Classification [3.8305310459921587]
マルチSpaCEは、時系列データの近接性、疎性、可視性、整合性をバランスさせる。
常に完全な妥当性を達成し、既存の方法と比較して優れたパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-12-14T09:21:44Z) - MFF-FTNet: Multi-scale Feature Fusion across Frequency and Temporal Domains for Time Series Forecasting [18.815152183468673]
時系列予測は多くの分野において重要であるが、現在のディープラーニングモデルはノイズやデータの分散、複雑なパターンのキャプチャに苦労している。
本稿では,コントラスト学習とマルチスケール特徴抽出を組み合わせることで,これらの課題に対処する新しいフレームワークであるMFF-FTNetを提案する。
5つの実世界のデータセットに対する大規模な実験は、MFF-FTNetが最先端のモデルを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2024-11-26T12:41:42Z) - Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting [16.640336442849282]
我々は,マルチタスク最適化問題を正規化手法として定式化し,マルチタスク学習情報を活用することを可能とする。
線形モデルの文脈におけるマルチタスク最適化のための閉形式解を導出する。
論文 参考訳(メタデータ) (2024-06-14T17:59:25Z) - Adapting to Length Shift: FlexiLength Network for Trajectory Prediction [53.637837706712794]
軌道予測は、自律運転、ロボット工学、シーン理解など、様々な応用において重要な役割を果たしている。
既存のアプローチは主に、一般に標準入力時間を用いて、公開データセットの予測精度を高めるために、コンパクトなニューラルネットワークの開発に重点を置いている。
本稿では,様々な観測期間に対する既存の軌道予測の堅牢性を高めるための,汎用的で効果的なフレームワークFlexiLength Network(FLN)を紹介する。
論文 参考訳(メタデータ) (2024-03-31T17:18:57Z) - Dual-Personalizing Adapter for Federated Foundation Models [35.863585349109385]
本稿では,テスト時間分布シフトを同時に処理するフェデレートデュアルパーソナライズアダプタアーキテクチャを提案する。
提案手法の有効性を,異なるNLPタスクのベンチマークデータセットを用いて評価した。
論文 参考訳(メタデータ) (2024-03-28T08:19:33Z) - TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series [57.4208255711412]
パウラ理論に基づいて,最近導入されたトランスフォーマーに基づく注目パウラ(TACTiS)の簡易な目的を提案する。
結果から,実世界の予測タスクにまたがって,このモデルのトレーニング性能が大幅に向上し,最先端のパフォーマンスが達成できることが示唆された。
論文 参考訳(メタデータ) (2023-10-02T16:45:19Z) - Deformable Mixer Transformer with Gating for Multi-Task Learning of
Dense Prediction [126.34551436845133]
CNNとTransformerには独自の利点があり、MTL(Multi-task Learning)の高密度予測に広く使われている。
本稿では,変形可能なCNNと問合せベースのTransformerの長所を共用したMTLモデルを提案する。
論文 参考訳(メタデータ) (2023-08-10T17:37:49Z) - Asynchronous Multi-Model Dynamic Federated Learning over Wireless
Networks: Theory, Modeling, and Optimization [20.741776617129208]
分散機械学習(ML)の鍵となる技術として、フェデレートラーニング(FL)が登場した。
まず、システムパラメータが学習性能に与える影響を捉えるために、長方形のスケジューリングステップと関数を定式化する。
我々の分析は、デバイストレーニング変数と非同期スケジューリング決定の協調的影響に光を当てている。
論文 参考訳(メタデータ) (2023-05-22T21:39:38Z) - Effective Adaptation in Multi-Task Co-Training for Unified Autonomous
Driving [103.745551954983]
本稿では,3つの下流タスクにおけるMoCoやSimCLRなど,多種多様な自己監督手法の転送性能について検討する。
彼らのパフォーマンスは、サブ最適か、あるいはシングルタスクベースラインよりもはるかに遅れていることに気付きました。
汎用マルチタスクトレーニングのための,単純かつ効果的な事前訓練-適応-ファインチューンパラダイムを提案する。
論文 参考訳(メタデータ) (2022-09-19T12:15:31Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
多くの現実世界では、多数のラベル付きサンプルの収集は不可能です。
少ないショット学習はこの問題に対処するための主要なアプローチであり、目的は限られた数のサンプルの存在下で新しいカテゴリに迅速に適応することです。
幾何学的変換の一般集合に対する等分散と不変性を同時に強制する新しい訓練機構を提案する。
論文 参考訳(メタデータ) (2021-03-01T21:14:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。