Are Large Language Models the future crowd workers of Linguistics?
- URL: http://arxiv.org/abs/2502.10266v1
- Date: Fri, 14 Feb 2025 16:23:39 GMT
- Title: Are Large Language Models the future crowd workers of Linguistics?
- Authors: Iris Ferrazzo,
- Abstract summary: This research aims to answer the question of whether Large Language Models (LLMs) may overcome obstacles if included in empirical linguistic pipelines.
The two forced elicitation tasks, originally designed for human participants, are reproduced with the help of OpenAI's GPT-4o-mini model.
- Score: 0.0
- License:
- Abstract: Data elicitation from human participants is one of the core data collection strategies used in empirical linguistic research. The amount of participants in such studies may vary considerably, ranging from a handful to crowdsourcing dimensions. Even if they provide resourceful extensive data, both of these settings come alongside many disadvantages, such as low control of participants' attention during task completion, precarious working conditions in crowdsourcing environments, and time-consuming experimental designs. For these reasons, this research aims to answer the question of whether Large Language Models (LLMs) may overcome those obstacles if included in empirical linguistic pipelines. Two reproduction case studies are conducted to gain clarity into this matter: Cruz (2023) and Lombard et al. (2021). The two forced elicitation tasks, originally designed for human participants, are reproduced in the proposed framework with the help of OpenAI's GPT-4o-mini model. Its performance with our zero-shot prompting baseline shows the effectiveness and high versatility of LLMs, that tend to outperform human informants in linguistic tasks. The findings of the second replication further highlight the need to explore additional prompting techniques, such as Chain-of-Thought (CoT) prompting, which, in a second follow-up experiment, demonstrates higher alignment to human performance on both critical and filler items. Given the limited scale of this study, it is worthwhile to further explore the performance of LLMs in empirical Linguistics and in other future applications in the humanities.
Related papers
- Aggregation Artifacts in Subjective Tasks Collapse Large Language Models' Posteriors [74.04775677110179]
In-context Learning (ICL) has become the primary method for performing natural language tasks with Large Language Models (LLMs)
In this work, we examine whether this is the result of the aggregation used in corresponding datasets, where trying to combine low-agreement, disparate annotations might lead to annotation artifacts that create detrimental noise in the prompt.
Our results indicate that aggregation is a confounding factor in the modeling of subjective tasks, and advocate focusing on modeling individuals instead.
arXiv Detail & Related papers (2024-10-17T17:16:00Z) - 'Simulacrum of Stories': Examining Large Language Models as Qualitative Research Participants [13.693069737188859]
Recent excitement around generative models has sparked a wave of proposals suggesting the replacement of human participation and labor in research and development.
We conducted interviews with 19 qualitative researchers to understand their perspectives on this paradigm shift.
arXiv Detail & Related papers (2024-09-28T18:28:47Z) - The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights [108.40766216456413]
We propose a question alignment framework to bridge the gap between large language models' English and non-English performance.
Experiment results show it can boost multilingual performance across diverse reasoning scenarios, model families, and sizes.
We analyze representation space, generated response and data scales, and reveal how question translation training strengthens language alignment within LLMs.
arXiv Detail & Related papers (2024-05-02T14:49:50Z) - YAYI 2: Multilingual Open-Source Large Language Models [53.92832054643197]
We propose YAYI 2, including both base and chat models, with 30 billion parameters.
YAYI 2 is pre-trained from scratch on a multilingual corpus which contains 2.65 trillion tokens filtered by our pre-training data processing pipeline.
The base model is aligned with human values through supervised fine-tuning with millions of instructions and reinforcement learning from human feedback.
arXiv Detail & Related papers (2023-12-22T17:34:47Z) - Are Large Language Models Good Fact Checkers: A Preliminary Study [26.023148371263012]
Large Language Models (LLMs) have drawn significant attention due to their outstanding reasoning capabilities and extensive knowledge repository.
This study aims to comprehensively evaluate various LLMs in tackling specific fact-checking subtasks.
arXiv Detail & Related papers (2023-11-29T05:04:52Z) - Exploring the Potential of Large Language Models in Computational Argumentation [54.85665903448207]
Large language models (LLMs) have demonstrated impressive capabilities in understanding context and generating natural language.
This work aims to embark on an assessment of LLMs, such as ChatGPT, Flan models, and LLaMA2 models, in both zero-shot and few-shot settings.
arXiv Detail & Related papers (2023-11-15T15:12:15Z) - Aligning Large Language Models with Human: A Survey [53.6014921995006]
Large Language Models (LLMs) trained on extensive textual corpora have emerged as leading solutions for a broad array of Natural Language Processing (NLP) tasks.
Despite their notable performance, these models are prone to certain limitations such as misunderstanding human instructions, generating potentially biased content, or factually incorrect information.
This survey presents a comprehensive overview of these alignment technologies, including the following aspects.
arXiv Detail & Related papers (2023-07-24T17:44:58Z) - Supporting Human-AI Collaboration in Auditing LLMs with LLMs [33.56822240549913]
Large language models have been shown to be biased and behave irresponsibly.
It is crucial to audit these language models rigorously.
Existing auditing tools leverage either or both humans and AI to find failures.
arXiv Detail & Related papers (2023-04-19T21:59:04Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
We present AM2iCo, Adversarial and Multilingual Meaning in Context.
It aims to faithfully assess the ability of state-of-the-art (SotA) representation models to understand the identity of word meaning in cross-lingual contexts.
Results reveal that current SotA pretrained encoders substantially lag behind human performance.
arXiv Detail & Related papers (2021-04-17T20:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.