論文の概要: SPIRIT: Short-term Prediction of solar IRradIance for zero-shot Transfer learning using Foundation Models
- arxiv url: http://arxiv.org/abs/2502.10307v1
- Date: Fri, 14 Feb 2025 17:10:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 14:47:07.842673
- Title: SPIRIT: Short-term Prediction of solar IRradIance for zero-shot Transfer learning using Foundation Models
- Title(参考訳): SPIRIT:基礎モデルを用いたゼロショット伝達学習のための太陽放射の短期予測
- Authors: Aditya Mishra, Ravindra T, Srinivasan Iyengar, Shivkumar Kalyanaraman, Ponnurangam Kumaraguru,
- Abstract要約: 太陽放射予測に基礎モデルを活用する新しい手法を提案する。
提案手法は,ゼロショットトランスファー学習における最先端モデルを約70%向上させ,過去のデータに頼ることなく,新しい場所での効果的なパフォーマンスを実現する。
- 参考スコア(独自算出の注目度): 7.6430384355362735
- License:
- Abstract: Traditional solar forecasting models are based on several years of site-specific historical irradiance data, often spanning five or more years, which are unavailable for newer photovoltaic farms. As renewable energy is highly intermittent, building accurate solar irradiance forecasting systems is essential for efficient grid management and enabling the ongoing proliferation of solar energy, which is crucial to achieve the United Nations' net zero goals. In this work, we propose SPIRIT, a novel approach leveraging foundation models for solar irradiance forecasting, making it applicable to newer solar installations. Our approach outperforms state-of-the-art models in zero-shot transfer learning by about 70%, enabling effective performance at new locations without relying on any historical data. Further improvements in performance are achieved through fine-tuning, as more location-specific data becomes available. These findings are supported by statistical significance, further validating our approach. SPIRIT represents a pivotal step towards rapid, scalable, and adaptable solar forecasting solutions, advancing the integration of renewable energy into global power systems.
- Abstract(参考訳): 従来の太陽予測モデルは、しばしば5年以上にわたる場所固有の歴史的照度データに基づいており、新しい太陽光発電所では利用できない。
再生可能エネルギーは非常に断続的であるため、効率的なグリッド管理と、国連の純ゼロ目標を達成するために不可欠な太陽エネルギーの継続的な増殖を可能にするために、正確な太陽放射予測システムを構築することが不可欠である。
本研究では,太陽放射予測に基礎モデルを活用する新しい手法であるSPIRITを提案し,より新しいソーラー機器に適用する。
提案手法は,ゼロショットトランスファー学習における最先端モデルを約70%向上させ,過去のデータに頼ることなく,新しい場所での効果的なパフォーマンスを実現する。
ロケーション固有のデータがより多く利用可能になるにつれて、パフォーマンスのさらなる改善が微調整によって達成される。
これらの知見は統計的意義によって裏付けられ、我々のアプローチをさらに検証する。
SPIRITは、迅速でスケーラブルで適応可能な太陽予測ソリューションへの重要な一歩であり、再生可能エネルギーのグローバル電力システムへの統合を推進している。
関連論文リスト
- Data-driven Surface Solar Irradiance Estimation using Neural Operators at Global Scale [1.231476564107544]
本稿では、数値気象予測(NWP)とデータ駆動機械学習気象モデルを用いた太陽放射予測の先駆的なアプローチを提案する。
我々のモデルは、長期SSI予測を提供することができる最初の適応的グローバルフレームワークである。
これらの予測の精度が向上したことは、太陽エネルギーを電力網に統合する上で大きな意味を持つ。
論文 参考訳(メタデータ) (2024-11-13T18:21:56Z) - Advanced simulation-based predictive modelling for solar irradiance sensor farms [0.5292801941204784]
この研究は、CAIDE(Cloud-based Analysis and Integration for Data efficiency)と呼ばれる新しいフレームワークを紹介している。
CAIDEは、太陽放射センサファームのリアルタイム監視、管理、予測のために設計されている。
この枠組みは、太陽光発電の展開と再生可能エネルギー源の将来に重要な意味を持っている。
論文 参考訳(メタデータ) (2024-04-05T15:44:51Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
エネルギー予測は、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
本稿では,大規模負荷データセットを収集し,再生可能エネルギーデータセットを新たにリリースした。
評価指標の異なるレベルにおいて,21種類の予測手法を用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-07-14T06:50:02Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
太陽発電は二酸化炭素の排出量を大幅に削減することで気候変動を緩和する大きな可能性を秘めている。
しかし、太陽光の固有の変動は、電力網に太陽エネルギーをシームレスに統合する上で大きな課題となる。
本稿では,衛星データを用いた時間的文脈の活用を目的としたディープラーニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-06-01T19:54:39Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
本研究は、観測された太陽活動状態の背後にあるデータ分布を正確に捉えるために、現在の最先端生成モデルの能力について検討する。
スーパーコンピュータ上での分散トレーニングを用いて、人間の専門家が区別できない高品質なサンプルを生成する、最大1024x1024解像度の生成モデルを訓練することができる。
論文 参考訳(メタデータ) (2023-04-14T14:40:32Z) - Comparison and Evaluation of Methods for a Predict+Optimize Problem in
Renewable Energy [42.00952788334554]
本稿では2021年に開催されたIEEE-CIS Technical Challenge on Predict+ for Renewable Energy Schedulingについて述べる。
コンペティションにおける上位7つのソリューションの比較と評価を行う。
勝算法は異なるシナリオを予測し、サンプル平均近似法を用いて全てのシナリオに最適化した。
論文 参考訳(メタデータ) (2022-12-21T02:34:12Z) - Low Emission Building Control with Zero-Shot Reinforcement Learning [70.70479436076238]
強化学習(RL)による制御は、建築エネルギー効率を著しく向上させることが示されている。
我々は、ゼロショットビルディング制御と呼ばれるパラダイムを優先せずに、排出削減ポリシーを得られることを示す。
論文 参考訳(メタデータ) (2022-08-12T17:13:25Z) - A Moment in the Sun: Solar Nowcasting from Multispectral Satellite Data
using Self-Supervised Learning [4.844946519309793]
我々は、自己教師付き学習を用いた多スペクトル衛星データから、太陽流の一般的なモデルを構築した。
我々のモデルは、衛星観測に基づいて、位置の将来の太陽放射を推定する。
提案手法は,25の太陽観測地点にまたがる異なる範囲で評価し,地平線を予測できる。
論文 参考訳(メタデータ) (2021-12-28T03:13:44Z) - Toward Foundation Models for Earth Monitoring: Proposal for a Climate
Change Benchmark [95.19070157520633]
近年の自己スーパービジョンの進歩は、大量の教師なしデータ上で大規模なニューラルネットワークを事前訓練することで、下流タスクの一般化が著しく増加することを示している。
基礎モデルとして最近作られたそのようなモデルは、自然言語処理の分野に転換してきた。
気候変動に関連する様々な下流タスクからなる新しいベンチマークを開発することを提案する。
論文 参考訳(メタデータ) (2021-12-01T15:38:19Z) - Solar Irradiation Forecasting using Genetic Algorithms [0.0]
太陽エネルギーは再生可能エネルギーの最も重要な貢献者の1つである。
電力グリッドの効率的な管理には、高精度な太陽光照射を予測する予測モデルが必要である。
訓練と検証に使用されるデータは、アメリカ合衆国の3つの異なる地理的ステーションから記録されている。
論文 参考訳(メタデータ) (2021-06-26T06:48:20Z) - Short term solar energy prediction by machine learning algorithms [0.47791962198275073]
機械学習技術の強みを利用した日次太陽エネルギー予測について報告する。
線形, 尾根, ラッソ, 決定木, ランダム森林, 人工ニューラルネットワークなどのベースライン回帰器の予測モデルを実装した。
改良された精度は,2つのグリッドサイズでランダム森林と尾根回帰器によって達成されている。
論文 参考訳(メタデータ) (2020-10-25T17:56:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。