論文の概要: Aspect-Oriented Summarization for Psychiatric Short-Term Readmission Prediction
- arxiv url: http://arxiv.org/abs/2502.10388v1
- Date: Fri, 14 Feb 2025 18:59:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 18:06:50.519740
- Title: Aspect-Oriented Summarization for Psychiatric Short-Term Readmission Prediction
- Title(参考訳): 精神医学的短期的寛解予測のためのアスペクト指向の要約
- Authors: WonJin Yoon, Boyu Ren, Spencer Thomas, Chanwhi Kim, Guergana Savova, Mei-Hua Hall, Timothy Miller,
- Abstract要約: 大規模言語モデル(LLM)は、タスク固有のデータセットの教師付きトレーニングを必要とせずに、長いドキュメントを処理できる。
長い複雑な入力を持つタスクに対して実現可能なアプローチの1つは、まず文書を要約し、次に教師付き微調整を要約に適用することである。
本稿では,原文書の異なる重要な側面を捉えることを目的とした,長文の要約処理手法を提案する。
- 参考スコア(独自算出の注目度): 1.3563640142303988
- License:
- Abstract: Recent progress in large language models (LLMs) has enabled the automated processing of lengthy documents even without supervised training on a task-specific dataset. Yet, their zero-shot performance in complex tasks as opposed to straightforward information extraction tasks remains suboptimal. One feasible approach for tasks with lengthy, complex input is to first summarize the document and then apply supervised fine-tuning to the summary. However, the summarization process inevitably results in some loss of information. In this study we present a method for processing the summaries of long documents aimed to capture different important aspects of the original document. We hypothesize that LLM summaries generated with different aspect-oriented prompts contain different \textit{information signals}, and we propose methods to measure these differences. We introduce approaches to effectively integrate signals from these different summaries for supervised training of transformer models. We validate our hypotheses on a high-impact task -- 30-day readmission prediction from a psychiatric discharge -- using real-world data from four hospitals, and show that our proposed method increases the prediction performance for the complex task of predicting patient outcome.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩により、タスク固有のデータセットの教師付きトレーニングがなくても、長いドキュメントの自動処理が可能になった。
しかし、単純な情報抽出タスクとは対照的に、複雑なタスクにおけるゼロショット性能は、依然として準最適である。
長い複雑な入力を持つタスクに対して実現可能なアプローチの1つは、まず文書を要約し、次に教師付き微調整を要約に適用することである。
しかし、要約処理は必然的に情報の損失をもたらす。
本研究では,原文書の異なる重要な側面を捉えることを目的とした,長い文書の要約処理手法を提案する。
我々は、異なるアスペクト指向のプロンプトで生成されたLCM要約には、異なる \textit{information signal} が含まれていると仮定し、これらの差分を測定する方法を提案する。
変換器モデルの教師あり学習において,これらの要約からの信号を効果的に統合する手法を提案する。
本研究では,4つの病院からの実世界データを用いて,高インパクトタスク(精神科退院から30日間の寛解予測)の仮説を検証し,患者結果を予測する複雑なタスクの予測性能を向上させる方法を示した。
関連論文リスト
- Learning Task Representations from In-Context Learning [73.72066284711462]
大規模言語モデル(LLM)は、文脈内学習において顕著な習熟性を示している。
ICLプロンプトにおけるタスク情報をアテンションヘッドの関数として符号化するための自動定式化を導入する。
提案手法の有効性は,最後の隠れ状態の分布と最適に実行されたテキスト内学習モデルとの整合性に起因していることを示す。
論文 参考訳(メタデータ) (2025-02-08T00:16:44Z) - Generalization v.s. Memorization: Tracing Language Models' Capabilities Back to Pretraining Data [76.90128359866462]
本稿では,出力確率と事前学習データ頻度の相関を計測する,記憶化,分布記憶化という拡張概念を導入する。
よりシンプルで知識集約的なタスクでは記憶が大きな役割を担い、一方、一般化はより困難で推論に基づくタスクでは鍵となる。
論文 参考訳(メタデータ) (2024-07-20T21:24:40Z) - Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
本稿では,学習用マルチタスクデータの順序を列挙するデータカリキュラム,すなわちData-CUBEを提案する。
タスクレベルでは、タスク間の干渉リスクを最小化するために最適なタスクオーダーを見つけることを目的としている。
インスタンスレベルでは、タスク毎のすべてのインスタンスの難易度を測定し、トレーニングのためにそれらを簡単に微分できるミニバッチに分割します。
論文 参考訳(メタデータ) (2024-01-07T18:12:20Z) - Domain Adaptation with Pre-trained Transformers for Query Focused
Abstractive Text Summarization [18.791701342934605]
Query Focused Text Summarization (QFTS)タスクは、与えられたクエリに基づいてテキストドキュメントの要約を生成するシステムを構築することを目的としている。
この課題に対処する上で重要な課題は、要約モデルをトレーニングするための大きなラベル付きデータの欠如である。
本稿では,一連のドメイン適応手法を探求することによって,この問題に対処する。
論文 参考訳(メタデータ) (2021-12-22T05:34:56Z) - Leveraging Pretrained Models for Automatic Summarization of
Doctor-Patient Conversations [9.184616102949228]
BARTを微調整することで,限られたトレーニングデータを用いて,流動的で適切な要約を生成することができることを示す。
慎重に選択された微調整データセットを用いて、この手法はより長い会話を扱うのに効果的であることが示されている。
論文 参考訳(メタデータ) (2021-09-24T20:18:59Z) - Abstractive Query Focused Summarization with Query-Free Resources [60.468323530248945]
本稿では,汎用的な要約リソースのみを利用して抽象的なqfsシステムを構築する問題を考える。
本稿では,要約とクエリのための新しい統一表現からなるMasked ROUGE回帰フレームワークであるMargeを提案する。
最小限の監視から学習したにもかかわらず,遠隔管理環境において最先端の結果が得られた。
論文 参考訳(メタデータ) (2020-12-29T14:39:35Z) - WSL-DS: Weakly Supervised Learning with Distant Supervision for Query
Focused Multi-Document Abstractive Summarization [16.048329028104643]
Query Focused Multi-Document Summarization (QF-MDS)タスクでは、ドキュメントのセットとクエリが与えられ、そこでこれらのドキュメントから要約を生成する。
このタスクの大きな課題のひとつは、ラベル付きトレーニングデータセットの可用性の欠如である。
本稿では,遠隔指導による弱教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2020-11-03T02:02:55Z) - Automated Concatenation of Embeddings for Structured Prediction [75.44925576268052]
本稿では, 埋め込みの自動結合(ACE)を提案し, 構造予測タスクにおける埋め込みのより優れた結合を見つけるプロセスを自動化する。
我々は、強化学習の戦略に従い、制御器のパラメータを最適化し、タスクモデルの精度に基づいて報酬を計算する。
論文 参考訳(メタデータ) (2020-10-10T14:03:20Z) - SummPip: Unsupervised Multi-Document Summarization with Sentence Graph
Compression [61.97200991151141]
SummPipはマルチドキュメント要約のための教師なしの手法である。
元の文書を文グラフに変換し、言語表現と深層表現の両方を考慮に入れます。
次に、スペクトルクラスタリングを適用して複数の文のクラスタを取得し、最後に各クラスタを圧縮して最終的な要約を生成する。
論文 参考訳(メタデータ) (2020-07-17T13:01:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。