論文の概要: Knowledge Integration Strategies in Autonomous Vehicle Prediction and Planning: A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2502.10477v2
- Date: Thu, 22 May 2025 13:27:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 14:49:21.641297
- Title: Knowledge Integration Strategies in Autonomous Vehicle Prediction and Planning: A Comprehensive Survey
- Title(参考訳): 自動運転車の予測と計画における知識統合戦略:総合的な調査
- Authors: Kumar Manas, Adrian Paschke,
- Abstract要約: 本研究は,自律運転システムにおける知識に基づくアプローチの統合に関する総合的な調査である。
我々は、自律運転システムにドメイン知識、交通ルール、コモンセンス推論を組み込むための様々な手法を解析する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This comprehensive survey examines the integration of knowledge-based approaches in autonomous driving systems, specifically focusing on trajectory prediction and planning. We extensively analyze various methodologies for incorporating domain knowledge, traffic rules, and commonsense reasoning into autonomous driving systems. The survey categorizes and analyzes approaches based on their knowledge representation and integration methods, ranging from purely symbolic to hybrid neuro-symbolic architectures. We examine recent developments in logic programming, foundation models for knowledge representation, reinforcement learning frameworks, and other emerging technologies incorporating domain knowledge. This work systematically reviews recent approaches, identifying key challenges, opportunities, and future research directions in knowledge-enhanced autonomous driving systems. Our analysis reveals emerging trends in the field, including the increasing importance of interpretable AI, the role of formal verification in safety-critical systems, and the potential of hybrid approaches that combine traditional knowledge representation with modern machine learning techniques.
- Abstract(参考訳): 本研究は,自律走行システムにおける知識に基づくアプローチの統合,特に軌道予測と計画に焦点を当てた総合的な調査である。
我々は、自律運転システムにドメイン知識、交通ルール、コモンセンス推論を組み込むための様々な手法を幅広く分析する。
この調査は、純粋に象徴的なアーキテクチャからハイブリッドなニューロシンボリックアーキテクチャまで、知識表現と統合手法に基づいて、アプローチを分類、分析する。
本稿では,最近の論理プログラミング,知識表現の基礎モデル,強化学習フレームワーク,ドメイン知識を取り入れた新しい技術について検討する。
この研究は、知識に富んだ自動運転システムにおいて、最近のアプローチを体系的にレビューし、重要な課題、機会、そして将来の研究方向を特定する。
我々の分析は、解釈可能なAIの重要性の増加、安全クリティカルシステムにおける形式的検証の役割、従来の知識表現と現代の機械学習技術を組み合わせたハイブリッドアプローチの可能性など、この分野における新たなトレンドを明らかにしている。
関連論文リスト
- Speculative Decoding and Beyond: An In-Depth Survey of Techniques [4.165029665035158]
シーケンシャルな依存関係は、大規模な自己回帰モデルをデプロイする上で、根本的なボトルネックとなる。
ジェネレーション・リファインメント・フレームワークの最近の進歩は、このトレードオフを著しく緩和できることを示している。
論文 参考訳(メタデータ) (2025-02-27T03:53:45Z) - A Survey of World Models for Autonomous Driving [63.33363128964687]
自律運転の最近の進歩は、堅牢な世界モデリングの進歩によって推進されている。
本稿では、自律運転の世界モデルにおける最近の進歩を体系的にレビューする。
論文 参考訳(メタデータ) (2025-01-20T04:00:02Z) - AI-Aided Kalman Filters [65.35350122917914]
カルマンフィルタ(KF)とその変種は、信号処理において最も著名なアルゴリズムの一つである。
最近の進歩は、古典的なカルマン型フィルタリングでディープニューラルネットワーク(DNN)を融合させる可能性を示している。
本稿では,KF型アルゴリズムにAIを組み込むための設計アプローチについて,チュートリアル形式で概説する。
論文 参考訳(メタデータ) (2024-10-16T06:47:53Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
本稿では,GBPGRと呼ばれる2段階の確率的グラフィカル推論フレームワークを提案する。
GBPGRでは、シンボル推論の結果を用いて、ディープラーニングモデルによる予測を洗練し、修正する。
提案手法は高い性能を示し, 帰納的タスクと帰納的タスクの両方において効果的な一般化を示す。
論文 参考訳(メタデータ) (2023-09-16T09:15:37Z) - CSM-H-R: A Context Modeling Framework in Supporting Reasoning Automation for Interoperable Intelligent Systems and Privacy Protection [0.07499722271664144]
本稿では,大規模システムにおけるハイレベルコンテキスト推論(HLC)の自動化のための新しいフレームワークを提案する。
フレームワークの設計は、インテリジェントシステムとCSMを扱うコンポーネント間の共有と相互コンテキスト、階層、関係、遷移の管理をサポートする。
ベクトルおよび行列計算へのHLC推論に関するフレームワーク実験の実装は、次のレベルの自動化に到達する可能性を示す。
論文 参考訳(メタデータ) (2023-08-21T22:21:15Z) - A Study of Situational Reasoning for Traffic Understanding [63.45021731775964]
トラフィック領域における状況推論のための3つの新しいテキストベースのタスクを考案する。
先行作業における言語推論タスクにまたがる一般化能力を示す知識強化手法を4つ採用する。
本稿では,データ分割におけるモデル性能の詳細な解析を行い,モデル予測を分類的に検討する。
論文 参考訳(メタデータ) (2023-06-05T01:01:12Z) - Using Ontologies for the Formalization and Recognition of Criticality
for Automated Driving [0.0]
最近の進歩は、交通世界の本質的にオープンで複雑なコンテキストを扱う際に、関連する知識を活用する能力があることを示唆している。
本稿では,自動走行車の環境における臨界要因のモデリングと定式化のための強力なツールであることを示す。
本稿では, 都市交通シナリオの大規模ドローンデータセットを用いて, モジュール方式を詳しく検討し, 実装を公開し, 提案手法の評価を行う。
論文 参考訳(メタデータ) (2022-05-03T14:32:11Z) - Goal Agnostic Planning using Maximum Likelihood Paths in Hypergraph
World Models [1.370633147306388]
本稿では,ハイパーグラフに基づく機械学習アルゴリズム,データ構造駆動型メンテナンス手法,およびDijkstraのアルゴリズムの確率的応用に基づく計画アルゴリズムを提案する。
このアルゴリズムが問題空間内の最適解を決定すること、数学的に有界な学習性能を証明し、時間を通してシステム状態の進行を解析する数学的モデルを提供する。
論文 参考訳(メタデータ) (2021-10-18T16:22:33Z) - An energy-based model for neuro-symbolic reasoning on knowledge graphs [0.0]
産業自動化システムを特徴付けるためのエネルギーベースのグラフ埋め込みアルゴリズムを提案する。
複数のドメインからの知識を組み合わせることで、学習モデルはコンテキスト対応の予測を行うことができる。
提示されたモデルは、生物学的にインスパイアされたニューラルアーキテクチャにマッピング可能であり、グラフ埋め込み法とニューロモルフィックコンピューティングの間の最初のブリッジとして機能する。
論文 参考訳(メタデータ) (2021-10-04T18:02:36Z) - Self-organizing Democratized Learning: Towards Large-scale Distributed
Learning Systems [71.14339738190202]
民主化された学習(Dem-AI)は、大規模な分散および民主化された機械学習システムを構築するための基本原則を備えた全体主義的哲学を定めている。
本稿では,Dem-AI哲学にヒントを得た分散学習手法を提案する。
提案アルゴリズムは,従来のFLアルゴリズムと比較して,エージェントにおける学習モデルの一般化性能が向上することを示す。
論文 参考訳(メタデータ) (2020-07-07T08:34:48Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
本稿では,データ駆動型アプローチと知識駆動型アプローチの強みを組み合わせたフレームワークとして,ハイブリッドAI手法を提案する。
具体的には、知識ベースを用いて深層ニューラルネットワークの学習過程を導く方法として、ニューロシンボリズムの概念を継承する。
論文 参考訳(メタデータ) (2020-03-09T15:04:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。