論文の概要: SinSim: Sinkhorn-Regularized SimCLR
- arxiv url: http://arxiv.org/abs/2502.10478v1
- Date: Thu, 13 Feb 2025 19:49:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:16:51.558074
- Title: SinSim: Sinkhorn-Regularized SimCLR
- Title(参考訳): SinSim: Sinkhorn-regularized SimCLR
- Authors: M. Hadi Sepanj, Paul Fiegth,
- Abstract要約: 自己教師型学習はラベル付きデータの必要性を排除して表現学習に革命をもたらした。
我々はSimCLRの新たな拡張であるSinSimを提案し、Sinkhorn正則化を最適輸送理論から統合して表現構造を強化する。
さまざまなデータセットに対する実証的な評価は、SinSimがSimCLRより優れており、VICRegやBarlow Twinsといった著名な自己管理手法と競合する性能を発揮することを示している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Self-supervised learning has revolutionized representation learning by eliminating the need for labeled data. Contrastive learning methods, such as SimCLR, maximize the agreement between augmented views of an image but lack explicit regularization to enforce a globally structured latent space. This limitation often leads to suboptimal generalization. We propose SinSim, a novel extension of SimCLR that integrates Sinkhorn regularization from optimal transport theory to enhance representation structure. The Sinkhorn loss, an entropy-regularized Wasserstein distance, encourages a well-dispersed and geometry-aware feature space, preserving discriminative power. Empirical evaluations on various datasets demonstrate that SinSim outperforms SimCLR and achieves competitive performance against prominent self-supervised methods such as VICReg and Barlow Twins. UMAP visualizations further reveal improved class separability and structured feature distributions. These results indicate that integrating optimal transport regularization into contrastive learning provides a principled and effective mechanism for learning robust, well-structured representations. Our findings open new directions for applying transport-based constraints in self-supervised learning frameworks.
- Abstract(参考訳): 自己教師型学習はラベル付きデータの必要性を排除して表現学習に革命をもたらした。
SimCLRのような対照的な学習手法は、画像の拡張ビュー間の合意を最大化するが、グローバルに構造化された潜在空間を強制するための明示的な正規化を欠いている。
この制限はしばしば準最適一般化につながる。
我々はSimCLRの新たな拡張であるSinSimを提案し、Sinkhorn正則化を最適輸送理論から統合して表現構造を強化する。
エントロピー規則化されたワッサーシュタイン距離であるシンクホーン損失は、よく分散した幾何学的特徴空間を奨励し、識別力を保持する。
さまざまなデータセットに関する実証的な評価によると、SinSimはSimCLRより優れており、VICRegやBarlow Twinsといった著名な自己管理手法と競合する性能を発揮する。
UMAPビジュアライゼーションにより、クラス分離性と構造的特徴分布がさらに向上した。
これらの結果は、最適な輸送正規化を対照的な学習に組み込むことが、堅牢でよく構造化された表現を学習するための原則的かつ効果的なメカニズムをもたらすことを示唆している。
本研究は,自己指導型学習フレームワークにトランスポートベースの制約を適用するための新たな方向性を明らかにする。
関連論文リスト
- Graph Structure Refinement with Energy-based Contrastive Learning [56.957793274727514]
グラフの構造と表現を学習するための生成訓練と識別訓練のジョイントに基づく教師なし手法を提案する。
本稿では,ECL-GSR(Energy-based Contrastive Learning)によるグラフ構造再構成(GSR)フレームワークを提案する。
ECL-GSRは、主要なベースラインに対するサンプルやメモリの少ない高速なトレーニングを実現し、下流タスクの単純さと効率性を強調している。
論文 参考訳(メタデータ) (2024-12-20T04:05:09Z) - SimO Loss: Anchor-Free Contrastive Loss for Fine-Grained Supervised Contrastive Learning [0.0]
提案した類似性-直交性(SimO)損失を利用したアンカーフリーコントラスト学習(L)手法を提案する。
提案手法は,2つの主目的を同時に最適化するセミメトリック判別損失関数を最小化する。
埋め込み空間におけるSimO損失の影響を可視化する。
論文 参考訳(メタデータ) (2024-10-07T17:41:10Z) - Towards Robust Recommendation via Decision Boundary-aware Graph Contrastive Learning [25.514007761856632]
グラフコントラスト学習(GCL)は、データ間隔によるバイアスの低減効果により、レコメンデータシステムにおいて注目を集めている。
これらの手法は, 動的学習過程における意味的不変性と難易度とのバランスをとるのに苦慮していると論じる。
本稿では,モデル能力の進化に伴い,コントラッシブペアのセマンティック不変性を効果的に維持し,動的に適応する新しいGCLベースのレコメンデーションフレームワークRGCLを提案する。
論文 参考訳(メタデータ) (2024-07-14T13:03:35Z) - Preventing Collapse in Contrastive Learning with Orthonormal Prototypes (CLOP) [0.0]
CLOPは、クラス埋め込み間の線形部分空間の形成を促進することにより、神経崩壊を防止するために設計された、新しい半教師付き損失関数である。
CLOPは性能を向上し,学習速度やバッチサイズにまたがる安定性が向上することを示す。
論文 参考訳(メタデータ) (2024-03-27T15:48:16Z) - Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
同期フェデレーションラーニング(FL)は、協調エッジラーニングの一般的なパラダイムである。
一部のデバイスは計算資源が限られており、様々な可用性があるため、FLレイテンシはストラグラーに非常に敏感である。
本稿では,NNの最適化手法をバックプロパゲーションにより活用し,グローバルモデルを階層的に更新するストラグラー対応層対応学習(SALF)を提案する。
論文 参考訳(メタデータ) (2024-03-27T09:14:36Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
エッジ・ザ・エア計算(AirComp)によるフェデレーション学習(FL)に焦点を当てる。
本稿では,AirComp ベースの FedAvg (AirFedAvg) アルゴリズムの凸および非凸条件下での収束について述べる。
エッジデバイス(モデル、勾配、モデル差など)で送信できるローカルアップデートの種類によって、AirFedAvgで送信するとアグリゲーションエラーが発生する可能性がある。
さらに、より実用的な信号処理方式を検討し、通信効率を改善し、これらの信号処理方式によって引き起こされるモデル集約誤差の異なる形式に収束解析を拡張する。
論文 参考訳(メタデータ) (2023-10-16T05:49:28Z) - Unifying Graph Contrastive Learning with Flexible Contextual Scopes [57.86762576319638]
フレキシブルコンテキストスコープを用いたグラフコントラスト学習(略してUGCL)という自己教師型学習手法を提案する。
本アルゴリズムは,隣接行列のパワーを制御し,コンテキストスコープによるフレキシブルな文脈表現を構築する。
局所的スコープと文脈的スコープの両方の表現に基づいて、distLはグラフ表現学習のための非常に単純な対照的な損失関数を最適化する。
論文 参考訳(メタデータ) (2022-10-17T07:16:17Z) - Cross-modal Representation Learning for Zero-shot Action Recognition [67.57406812235767]
我々は、ゼロショット動作認識(ZSAR)のためのビデオデータとテキストラベルを共同で符号化するクロスモーダルトランスフォーマーベースのフレームワークを提案する。
我々のモデルは概念的に新しいパイプラインを使用し、視覚的表現と視覚的意味的関連をエンドツーエンドで学習する。
実験結果から,本モデルはZSARの芸術的状況に大きく改善され,UCF101,HMDB51,ActivityNetベンチマークデータセット上でトップ1の精度が向上した。
論文 参考訳(メタデータ) (2022-05-03T17:39:27Z) - Imposing Consistency for Optical Flow Estimation [73.53204596544472]
プロキシタスクによる一貫性の導入は、データ駆動学習を強化することが示されている。
本稿では,光フロー推定のための新しい,効果的な整合性戦略を提案する。
論文 参考訳(メタデータ) (2022-04-14T22:58:30Z) - Learning Aligned Cross-Modal Representation for Generalized Zero-Shot
Classification [17.177622259867515]
一般化ゼロショット分類(GZSC)のためのアラインド・クロスモーダル表現(adigned Cross-Modal Representations, ACMR)の学習による革新的オートエンコーダネットワークを提案する。
具体的には,学習型分類器によって導かれる潜在部分空間上でのクロスモーダルな潜在特徴のアライメントを強化するために,新しい視覚・セマンティックアライメント(VSA)法を提案する。
さらに,潜伏変数の識別能力を高めるとともに,潜伏変数が崩壊する可能性を低減するための新しい情報拡張モジュール (IEM) を提案する。
論文 参考訳(メタデータ) (2021-12-24T03:35:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。