論文の概要: Poisoning Attacks to Local Differential Privacy for Ranking Estimation
- arxiv url: http://arxiv.org/abs/2506.24033v1
- Date: Mon, 30 Jun 2025 16:39:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 21:27:54.157957
- Title: Poisoning Attacks to Local Differential Privacy for Ranking Estimation
- Title(参考訳): ランキング推定のための地域差分プライバシに対する攻撃
- Authors: Pei Zhan, Peng Tang, Yangzhuo Li, Puwen Wei, Shanqing Guo,
- Abstract要約: ローカルディファレンシャルプライバシ(LDP)は、ユーザが入力を摂動させ、データの可視的識別性を提供する。
本稿では,まず,ランキング推定のための新規な毒殺攻撃について紹介する。
我々はkRR, OUE, OLHプロトコルの対応戦略を提案する。
- 参考スコア(独自算出の注目度): 8.14832255549522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Local differential privacy (LDP) involves users perturbing their inputs to provide plausible deniability of their data. However, this also makes LDP vulnerable to poisoning attacks. In this paper, we first introduce novel poisoning attacks for ranking estimation. These attacks are intricate, as fake attackers do not merely adjust the frequency of target items. Instead, they leverage a limited number of fake users to precisely modify frequencies, effectively altering item rankings to maximize gains. To tackle this challenge, we introduce the concepts of attack cost and optimal attack item (set), and propose corresponding strategies for kRR, OUE, and OLH protocols. For kRR, we iteratively select optimal attack items and allocate suitable fake users. For OUE, we iteratively determine optimal attack item sets and consider the incremental changes in item frequencies across different sets. Regarding OLH, we develop a harmonic cost function based on the pre-image of a hash to select that supporting a larger number of effective attack items. Lastly, we present an attack strategy based on confidence levels to quantify the probability of a successful attack and the number of attack iterations more precisely. We demonstrate the effectiveness of our attacks through theoretical and empirical evidence, highlighting the necessity for defenses against these attacks. The source code and data have been made available at https://github.com/LDP-user/LDP-Ranking.git.
- Abstract(参考訳): ローカルディファレンシャルプライバシ(LDP)は、ユーザが入力を摂動させ、データの可視的識別性を提供する。
しかし、これはLDPを毒殺攻撃に脆弱にする。
本稿では,まず,ランキング推定のための新規な毒殺攻撃について紹介する。
これらの攻撃は、偽の攻撃者が単にターゲットアイテムの頻度を調整するだけではないため、複雑である。
代わりに、限られた数の偽ユーザーが周波数を正確に変更し、アイテムランキングを効果的に変更して利益を最大化する。
この課題に対処するために、攻撃コストと最適な攻撃項目(セット)の概念を導入し、kRR、OUE、OLHプロトコルに対応する戦略を提案する。
kRRの場合、最適な攻撃項目を反復的に選択し、適切な偽ユーザを割り当てる。
OUEでは、最適な攻撃アイテムセットを反復的に決定し、異なるセット間でアイテム頻度の漸進的な変化を考察する。
OLHについては、ハッシュのプリイメージに基づく高調波コスト関数を開発し、多数の効果的な攻撃項目をサポートするように選択する。
最後に,攻撃成功確率と攻撃回数をより正確に定量化するために,信頼度に基づく攻撃戦略を提案する。
我々は,これらの攻撃に対する防衛の必要性を浮き彫りにして,理論的および実証的な証拠を通じて攻撃の有効性を実証する。
ソースコードとデータはhttps://github.com/LDP-user/LDP-Ranking.gitで公開されている。
関連論文リスト
- Optimal Attack and Defense for Reinforcement Learning [11.36770403327493]
敵RLでは、外部攻撃者は、環境との相互作用を操作できる。
我々は、攻撃者が予想される報酬を最大化するステルス攻撃を設計する際の問題を示す。
被害者に対する最適な防衛方針は,Stackelbergゲームに対する解決策として計算できる,と我々は主張する。
論文 参考訳(メタデータ) (2023-11-30T21:21:47Z) - RLHFPoison: Reward Poisoning Attack for Reinforcement Learning with Human Feedback in Large Language Models [62.72318564072706]
Reinforcement Learning with Human Feedback (RLHF) は、Large Language Models (LLM) を人間の好みに合わせるために設計された方法論である。
その利点にもかかわらず、RLHFはテキストのランク付けに人間のアノテーションに依存している。
そこで我々は,ある悪意ある行動に到達するために,候補の選好ランク選択に対する中毒攻撃手法であるRancPoisonを提案する。
論文 参考訳(メタデータ) (2023-11-16T07:48:45Z) - DALA: A Distribution-Aware LoRA-Based Adversarial Attack against
Language Models [64.79319733514266]
敵攻撃は入力データに微妙な摂動をもたらす可能性がある。
最近の攻撃方法は比較的高い攻撃成功率(ASR)を達成することができる。
そこで本研究では,分散ロラをベースとしたDALA(Adversarial Attack)手法を提案する。
論文 参考訳(メタデータ) (2023-11-14T23:43:47Z) - Adversarial Attacks Neutralization via Data Set Randomization [3.655021726150369]
ディープラーニングモデルに対する敵対的な攻撃は、信頼性とセキュリティに深刻な脅威をもたらす。
本稿では,超空間射影に根ざした新しい防御機構を提案する。
提案手法は,敵対的攻撃に対するディープラーニングモデルの堅牢性を高めていることを示す。
論文 参考訳(メタデータ) (2023-06-21T10:17:55Z) - Defending against the Label-flipping Attack in Federated Learning [5.769445676575767]
フェデレーテッド・ラーニング(FL)は、参加する仲間にデザインによる自律性とプライバシを提供する。
ラベルフリッピング(LF)攻撃(英: label-flipping, LF)は、攻撃者がラベルをめくってトレーニングデータに毒を盛る攻撃である。
本稿では、まず、ピアのローカル更新からこれらの勾配を動的に抽出する新しいディフェンスを提案する。
論文 参考訳(メタデータ) (2022-07-05T12:02:54Z) - Membership Inference Attacks From First Principles [24.10746844866869]
メンバシップ推論攻撃では、トレーニングされた機械学習モデルをクエリして、モデルのトレーニングデータセットに特定のサンプルが含まれているかどうかを予測することが可能になる。
これらの攻撃は現在、平均ケースの"精度"メトリクスを使用して評価されており、攻撃がトレーニングセットの任意のメンバを確実に識別できるかどうかを特徴付けることができない。
攻撃は偽陽性率の低い偽陽性率で計算することで評価されるべきであり、このような評価を行った場合、ほとんどの事前攻撃は不十分である。
我々の攻撃は偽陽性率の低いところで10倍強力であり、既存の指標に対する以前の攻撃を厳密に支配している。
論文 参考訳(メタデータ) (2021-12-07T08:47:00Z) - Composite Adversarial Attacks [57.293211764569996]
敵対攻撃は、機械学習(ML)モデルを欺くための技術です。
本論文では,攻撃アルゴリズムの最適組み合わせを自動的に探索するための複合攻撃法(Composite Adrial Attack,CAA)を提案する。
CAAは11の防衛でトップ10の攻撃を破り、時間の経過は少ない。
論文 参考訳(メタデータ) (2020-12-10T03:21:16Z) - Subpopulation Data Poisoning Attacks [18.830579299974072]
機械学習に対する攻撃は、機械学習アルゴリズムが使用するデータの逆修正を誘導し、デプロイ時に出力を選択的に変更する。
本研究では,エフェサブポピュレーションアタック(emphsubpopulation attack)と呼ばれる新たなデータ中毒攻撃を導入する。
サブポピュレーション攻撃のためのモジュラーフレームワークを設計し、異なるビルディングブロックでインスタンス化し、その攻撃がさまざまなデータセットや機械学習モデルに有効であることを示す。
論文 参考訳(メタデータ) (2020-06-24T20:20:52Z) - RayS: A Ray Searching Method for Hard-label Adversarial Attack [99.72117609513589]
我々は、レイサーチ攻撃(RayS)を提案し、これはハードラベル攻撃の有効性と効率を大幅に改善する。
モデルの正当性チェックとしても使用できる。
論文 参考訳(メタデータ) (2020-06-23T07:01:50Z) - Revisiting Membership Inference Under Realistic Assumptions [87.13552321332988]
従来研究でよく用いられていた仮定のいくつかが緩和された環境での会員推定について検討する。
この設定は、研究者が通常考慮するバランスのとれた事前設定よりも現実的である。
我々は、トレーニングセットメンバーに対応する入力が損失関数の局所最小値に近いという直感に基づく新しい推論攻撃を開発する。
論文 参考訳(メタデータ) (2020-05-21T20:17:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。