論文の概要: The Role of World Models in Shaping Autonomous Driving: A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2502.10498v1
- Date: Fri, 14 Feb 2025 18:43:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:11:41.543576
- Title: The Role of World Models in Shaping Autonomous Driving: A Comprehensive Survey
- Title(参考訳): 自動運転車の形状形成における世界モデルの役割--総合調査
- Authors: Sifan Tu, Xin Zhou, Dingkang Liang, Xingyu Jiang, Yumeng Zhang, Xiaofan Li, Xiang Bai,
- Abstract要約: ドライビング・ワールド・モデル(DWM)は、ドライビング・プロセス中のシーンの進化を予測することに焦点を当てている。
DWM法は、自律運転システムが動的運転環境をよりよく知覚し、理解し、相互作用することを可能にする。
- 参考スコア(独自算出の注目度): 50.62538723793247
- License:
- Abstract: Driving World Model (DWM), which focuses on predicting scene evolution during the driving process, has emerged as a promising paradigm in pursuing autonomous driving. These methods enable autonomous driving systems to better perceive, understand, and interact with dynamic driving environments. In this survey, we provide a comprehensive overview of the latest progress in DWM. We categorize existing approaches based on the modalities of the predicted scenes and summarize their specific contributions to autonomous driving. In addition, high-impact datasets and various metrics tailored to different tasks within the scope of DWM research are reviewed. Finally, we discuss the potential limitations of current research and propose future directions. This survey provides valuable insights into the development and application of DWM, fostering its broader adoption in autonomous driving. The relevant papers are collected at https://github.com/LMD0311/Awesome-World-Model.
- Abstract(参考訳): ドライビング・ワールド・モデル(DWM)は、ドライビング・プロセス中のシーンの進化を予測することに焦点を当てており、自動運転を追求する上で有望なパラダイムとして浮上している。
これらの手法により、自律運転システムは動的運転環境をよりよく知覚し、理解し、相互作用することができる。
本稿では,DWMの最新動向を概観する。
予測されたシーンのモダリティに基づいて既存のアプローチを分類し、その自動運転への具体的な貢献を要約する。
さらに、DWM研究の範囲内で異なるタスクに合わせて調整された、ハイインパクトデータセットと様々なメトリクスについてレビューする。
最後に、現在の研究の潜在的な限界について議論し、今後の方向性を提案する。
この調査は、DWMの開発と適用に関する貴重な洞察を提供し、自動運転におけるより広範な採用を促進する。
関連する論文はhttps://github.com/LMD0311/Awesome-World-Modelで収集される。
関連論文リスト
- Exploring the Interplay Between Video Generation and World Models in Autonomous Driving: A Survey [61.39993881402787]
世界モデルとビデオ生成は、自動運転の領域において重要な技術である。
本稿では,この2つの技術の関係について検討する。
映像生成モデルと世界モデルとの相互作用を分析することにより,重要な課題と今後の研究方向性を明らかにする。
論文 参考訳(メタデータ) (2024-11-05T08:58:35Z) - DrivingDojo Dataset: Advancing Interactive and Knowledge-Enriched Driving World Model [65.43473733967038]
私たちは、複雑な駆動ダイナミクスを備えたインタラクティブな世界モデルのトレーニング用に作られた最初のデータセットであるDrivingDojoを紹介します。
私たちのデータセットには、完全な運転操作、多様なマルチエージェント・インタープレイ、豊富なオープンワールド運転知識を備えたビデオクリップが含まれています。
論文 参考訳(メタデータ) (2024-10-14T17:19:23Z) - GenAD: Generalized Predictive Model for Autonomous Driving [75.39517472462089]
本稿では,自動運転分野における最初の大規模ビデオ予測モデルを紹介する。
我々のモデルはGenADと呼ばれ、新しい時間的推論ブロックでシーンを駆動する際の挑戦的なダイナミクスを扱う。
アクション条件付き予測モデルやモーションプランナーに適応することができ、現実世界の運転アプリケーションに大きな可能性を秘めている。
論文 参考訳(メタデータ) (2024-03-14T17:58:33Z) - World Models for Autonomous Driving: An Initial Survey [16.448614804069674]
将来の出来事を正確に予測し、その影響を評価する能力は、安全性と効率の両方において最重要である。
世界モデルは変革的なアプローチとして現れており、自律運転システムは大量のセンサーデータを合成し、解釈することができる。
本稿では,自律運転における世界モデルの現状と今後の展開について概説する。
論文 参考訳(メタデータ) (2024-03-05T03:23:55Z) - Beyond One Model Fits All: Ensemble Deep Learning for Autonomous
Vehicles [16.398646583844286]
本研究では,Mediated Perception, Behavior Reflex, Direct Perceptionの3つの異なるニューラルネットワークモデルを紹介する。
我々のアーキテクチャは、グローバルなルーティングコマンドを使用して、ベース、将来の潜伏ベクトル予測、補助タスクネットワークからの情報を融合し、適切なアクションサブネットワークを選択する。
論文 参考訳(メタデータ) (2023-12-10T04:40:02Z) - Driving into the Future: Multiview Visual Forecasting and Planning with
World Model for Autonomous Driving [56.381918362410175]
Drive-WMは、既存のエンド・ツー・エンドの計画モデルと互換性のある世界初のドライビングワールドモデルである。
ドライビングシーンで高忠実度マルチビュー映像を生成する。
論文 参考訳(メタデータ) (2023-11-29T18:59:47Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
大規模言語モデル(LLM)は、文脈理解、論理的推論、回答生成などの能力を示した。
本稿では,自動走行のための大規模言語モデル (LLM4AD) に関する研究ラインを体系的にレビューする。
論文 参考訳(メタデータ) (2023-11-02T07:23:33Z) - Vision Language Models in Autonomous Driving: A Survey and Outlook [26.70381732289961]
視覚言語モデル(VLM)は、その優れた性能と大規模言語モデル(LLM)を活用する能力により、広く注目を集めている。
本稿では,この領域における視覚言語モデルの進歩を包括的かつ体系的に調査し,認識と理解,ナビゲーションと計画,意思決定と制御,エンドツーエンドの自動運転,データ生成などを紹介する。
論文 参考訳(メタデータ) (2023-10-22T21:06:10Z) - End-to-end Autonomous Driving: Challenges and Frontiers [45.391430626264764]
エンドツーエンドの自動運転におけるモチベーション、ロードマップ、方法論、課題、今後のトレンドについて、270以上の論文を包括的に分析する。
マルチモダリティ、解釈可能性、因果的混乱、堅牢性、世界モデルなど、いくつかの重要な課題を掘り下げます。
基礎モデルと視覚前訓練の現在の進歩と、これらの技術をエンドツーエンドの駆動フレームワークに組み込む方法について論じる。
論文 参考訳(メタデータ) (2023-06-29T14:17:24Z) - Fully End-to-end Autonomous Driving with Semantic Depth Cloud Mapping
and Multi-Agent [2.512827436728378]
本稿では,エンド・ツー・エンドとマルチタスクの学習方法を用いて学習した新しいディープラーニングモデルを提案する。
このモデルは,CARLAシミュレータ上で,現実の環境を模倣するために,通常の状況と異なる天候のシナリオを用いて評価する。
論文 参考訳(メタデータ) (2022-04-12T03:57:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。