Toward Equitable Access: Leveraging Crowdsourced Reviews to Investigate Public Perceptions of Health Resource Accessibility
- URL: http://arxiv.org/abs/2502.10641v1
- Date: Sat, 15 Feb 2025 02:34:55 GMT
- Title: Toward Equitable Access: Leveraging Crowdsourced Reviews to Investigate Public Perceptions of Health Resource Accessibility
- Authors: Zhaoqian Xue, Guanhong Liu, Kai Wei, Chong Zhang, Qingcheng Zeng, Songhua Hu, Wenyue Hua, Lizhou Fan, Yongfeng Zhang, Lingyao Li,
- Abstract summary: This study uses crowdsourced data from Google Maps reviews to extract insights on public perceptions of health resource accessibility in the United States during the COVID-19 pandemic.
Our findings reveal that public perceptions of health resource accessibility varied significantly across the U.S., with disparities peaking during the pandemic and slightly easing post-crisis.
Political affiliation, racial demographics, and education levels emerged as key factors shaping these perceptions.
- Score: 36.09285467199603
- License:
- Abstract: Access to health resources is a critical determinant of public well-being and societal resilience, particularly during public health crises when demand for medical services and preventive care surges. However, disparities in accessibility persist across demographic and geographic groups, raising concerns about equity. Traditional survey methods often fall short due to limitations in coverage, cost, and timeliness. This study leverages crowdsourced data from Google Maps reviews, applying advanced natural language processing techniques, specifically ModernBERT, to extract insights on public perceptions of health resource accessibility in the United States during the COVID-19 pandemic. Additionally, we employ Partial Least Squares regression to examine the relationship between accessibility perceptions and key socioeconomic and demographic factors including political affiliation, racial composition, and educational attainment. Our findings reveal that public perceptions of health resource accessibility varied significantly across the U.S., with disparities peaking during the pandemic and slightly easing post-crisis. Political affiliation, racial demographics, and education levels emerged as key factors shaping these perceptions. These findings underscore the need for targeted interventions and policy measures to address inequities, fostering a more inclusive healthcare infrastructure that can better withstand future public health challenges.
Related papers
- Fairness in Computational Innovations: Identifying Bias in Substance Use Treatment Length of Stay Prediction Models with Policy Implications [0.477529483515826]
Predictive machine learning (ML) models are computational innovations that can enhance medical decision-making.
However, societal biases can be encoded into such models, raising concerns about inadvertently affecting health outcomes for disadvantaged groups.
This issue is particularly pressing in the context of substance use disorder (SUD) treatment, where biases in predictive models could significantly impact the recovery of highly vulnerable patients.
arXiv Detail & Related papers (2024-12-08T06:47:23Z) - Data-Driven Approach to assess and identify gaps in healthcare set up in South Asia [1.9058065795191268]
South Asian countries are working to improve their primary healthcare system.
Data-driven surveillance approaches are required.
We propose to harness current breakthroughs in Earth-observation technology.
arXiv Detail & Related papers (2024-09-21T16:50:16Z) - Deep Reinforcement Learning for Efficient and Fair Allocation of Health Care Resources [47.57108369791273]
Scarcity of health care resources could result in the unavoidable consequence of rationing.
There is no universally accepted standard for health care resource allocation protocols.
We propose a transformer-based deep Q-network to integrate the disease progression of individual patients and the interaction effects among patients.
arXiv Detail & Related papers (2023-09-15T17:28:06Z) - On Curating Responsible and Representative Healthcare Video
Recommendations for Patient Education and Health Literacy: An Augmented
Intelligence Approach [5.545277272908999]
One in three U.S. adults use the Internet to diagnose or learn about a health concern.
Health literacy divides can be exacerbated by algorithmic recommendations.
arXiv Detail & Related papers (2022-07-13T01:54:59Z) - Fair Machine Learning in Healthcare: A Review [90.22219142430146]
We analyze the intersection of fairness in machine learning and healthcare disparities.
We provide a critical review of the associated fairness metrics from a machine learning standpoint.
We propose several new research directions that hold promise for developing ethical and equitable ML applications in healthcare.
arXiv Detail & Related papers (2022-06-29T04:32:10Z) - Machine Learning for Deferral of Care Prediction [4.436632973105494]
Continual care deferral in populations may lead to a decline in population health and compound health issues leading to higher social and financial costs in the long term.
Minority and vulnerable populations are at a greater risk of care deferral due to socioeconomic factors.
Many health systems currently use rules-based techniques to retroactively identify patients who previously deferred care.
The objective of this model is to identify patients at risk of deferring care and allow the health system to prevent care deferrals through direct outreach or social mediation.
arXiv Detail & Related papers (2022-06-09T01:21:13Z) - CovidTracker: A comprehensive Covid-related social media dataset for NLP
tasks [8.230368367333043]
This release supports the findings of a research study funded by the Scottish Government Chief Scientists' Office.
It aims to investigate social sentiment in order to understand the response to public health measures implemented during the pandemic.
arXiv Detail & Related papers (2021-03-30T15:44:48Z) - Leveraging Administrative Data for Bias Audits: Assessing Disparate
Coverage with Mobility Data for COVID-19 Policy [61.60099467888073]
We show how linking administrative data can enable auditing mobility data for bias.
We show that older and non-white voters are less likely to be captured by mobility data.
We show that allocating public health resources based on such mobility data could disproportionately harm high-risk elderly and minority groups.
arXiv Detail & Related papers (2020-11-14T02:04:14Z) - Assessing the Severity of Health States based on Social Media Posts [62.52087340582502]
We propose a multiview learning framework that models both the textual content as well as contextual-information to assess the severity of the user's health state.
The diverse NLU views demonstrate its effectiveness on both the tasks and as well as on the individual disease to assess a user's health.
arXiv Detail & Related papers (2020-09-21T03:45:14Z) - COVI White Paper [67.04578448931741]
Contact tracing is an essential tool to change the course of the Covid-19 pandemic.
We present an overview of the rationale, design, ethical considerations and privacy strategy of COVI,' a Covid-19 public peer-to-peer contact tracing and risk awareness mobile application developed in Canada.
arXiv Detail & Related papers (2020-05-18T07:40:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.