CovidTracker: A comprehensive Covid-related social media dataset for NLP
tasks
- URL: http://arxiv.org/abs/2103.16446v2
- Date: Fri, 17 Jun 2022 11:40:35 GMT
- Title: CovidTracker: A comprehensive Covid-related social media dataset for NLP
tasks
- Authors: Richard Plant, Amir Hussain
- Abstract summary: This release supports the findings of a research study funded by the Scottish Government Chief Scientists' Office.
It aims to investigate social sentiment in order to understand the response to public health measures implemented during the pandemic.
- Score: 8.230368367333043
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The Covid-19 pandemic presented an unprecedented global public health
emergency, and concomitantly an unparalleled opportunity to investigate public
responses to adverse social conditions. The widespread ability to post messages
to social media platforms provided an invaluable outlet for such an outpouring
of public sentiment, including not only expressions of social solidarity, but
also the spread of misinformation and misconceptions around the effect and
potential risks of the pandemic. This archive of message content therefore
represents a key resource in understanding public responses to health crises,
analysis of which could help to inform public policy interventions to better
respond to similar events in future. We present a benchmark database of public
social media postings from the United Kingdom related to the Covid-19 pandemic
for academic research purposes, along with some initial analysis, including a
taxonomy of key themes organised by keyword. This release supports the findings
of a research study funded by the Scottish Government Chief Scientists' Office
that aims to investigate social sentiment in order to understand the response
to public health measures implemented during the pandemic.
Related papers
- Employing Social Media to Improve Mental Health Outcomes [16.03236334555092]
This chapter presents research conducted in the past decade that has harnessed social media data in the service of mental health and well-being.
The discussion is organized along three thrusts: a first that highlights how social media data has been utilized to detect and predict risk to varied mental health concerns; a second thrust that focuses on translation paradigms that can enable to use of such social media based algorithms in the real-world; and the final thrust that brings to the fore the ethical considerations and challenges that engender the conduct of this research as well as its translation.
arXiv Detail & Related papers (2025-01-09T23:41:24Z) - Event Detection from Social Media for Epidemic Prediction [76.90779562626541]
We develop a framework to extract and analyze epidemic-related events from social media posts.
Experimentation reveals how ED models trained on COVID-based SPEED can effectively detect epidemic events for three unseen epidemics.
We show that reporting sharp increases in the extracted events by our framework can provide warnings 4-9 weeks earlier than the WHO epidemic declaration for Monkeypox.
arXiv Detail & Related papers (2024-04-02T06:31:17Z) - Visualizing Relation Between (De)Motivating Topics and Public Stance
toward COVID-19 Vaccine [0.0]
In this study, we proposed an interactive visualization tool to inspect and analyze the topics that resonated among Twitter-sphere during the COVID-19 pandemic.
This tool can easily be generalized for any scenario for visual analysis and to increase the transparency of social media data for researchers and the general population alike.
arXiv Detail & Related papers (2023-06-21T09:01:53Z) - Executive Voiced Laughter and Social Approval: An Explorative Machine
Learning Study [56.03830131919201]
We study voiced laughter in executive communication and its effect on social approval.
Our findings contribute to research at the nexus of executive communication, strategic leadership, and social evaluations.
arXiv Detail & Related papers (2023-05-16T14:39:00Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
This paper presents an efficient semantic pipeline to study depression severity in individuals based on their social media writings.
We use test user sentences for producing semantic rankings over an index of representative training sentences corresponding to depressive symptoms and severity levels.
We evaluate our methods on two Reddit-based benchmarks, achieving 30% improvement over state of the art in terms of measuring depression severity.
arXiv Detail & Related papers (2022-11-14T18:47:26Z) - When Infodemic Meets Epidemic: a Systematic Literature Review [3.3454373538792543]
Social media offer significant amounts of data that can be leveraged for bio-surveillance.
This systematic literature review provides a methodical overview of the integration of social media in different epidemic-related contexts.
arXiv Detail & Related papers (2022-10-03T21:04:30Z) - COVID-19 and Big Data: Multi-faceted Analysis for Spatio-temporal
Understanding of the Pandemic with Social Media Conversations [4.07452542897703]
Social media platforms have served as a vehicle for the global conversation about COVID-19.
We present a framework for analysis, mining, and tracking the critical content and characteristics of social media conversations around the pandemic.
arXiv Detail & Related papers (2021-04-22T00:45:50Z) - Tracking the evolution of crisis processes and mental health on social
media during the COVID-19 pandemic [0.90238471756546]
This study aims at examining the stages of crisis response and recovery as a sociological problem.
Based on a large collection of Twitter data spanning from March to August 2020 in Argentina, we present a thematic analysis on the differences in language used in social media posts.
arXiv Detail & Related papers (2020-11-22T14:30:09Z) - Fighting the COVID-19 Infodemic in Social Media: A Holistic Perspective
and a Call to Arms [42.7332883578842]
With the outbreak of the COVID-19 pandemic, people turned to social media to read and to share timely information.
There was also a new blending of medical and political misinformation and disinformation, which gave rise to the first global infodemic.
This is a complex problem that needs a holistic approach combining the perspectives of journalists, fact-checkers, policymakers, government entities, social media platforms, and society as a whole.
arXiv Detail & Related papers (2020-07-15T21:18:30Z) - COVI White Paper [67.04578448931741]
Contact tracing is an essential tool to change the course of the Covid-19 pandemic.
We present an overview of the rationale, design, ethical considerations and privacy strategy of COVI,' a Covid-19 public peer-to-peer contact tracing and risk awareness mobile application developed in Canada.
arXiv Detail & Related papers (2020-05-18T07:40:49Z) - The Ivory Tower Lost: How College Students Respond Differently than the
General Public to the COVID-19 Pandemic [66.80677233314002]
Pandemic of the novel Coronavirus Disease 2019 (COVID-19) has presented governments with ultimate challenges.
In the United States, the country with the highest confirmed COVID-19 infection cases, a nationwide social distancing protocol has been implemented by the President.
This paper aims to discover the social implications of this unprecedented disruption in our interactive society by mining people's opinions on social media.
arXiv Detail & Related papers (2020-04-21T13:02:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.