LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization
- URL: http://arxiv.org/abs/2502.10648v1
- Date: Sat, 15 Feb 2025 02:55:22 GMT
- Title: LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization
- Authors: Erica Zhang, Ryunosuke Goto, Naomi Sagan, Jurik Mutter, Nick Phillips, Ash Alizadeh, Kangwook Lee, Jose Blanchet, Mert Pilanci, Robert Tibshirani,
- Abstract summary: We introduce LLM-Lasso, a framework that leverages large language models (LLMs) to guide feature selection in Lasso regression.
LLMs generate penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model.
Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model.
- Score: 59.75242204923353
- License:
- Abstract: We introduce LLM-Lasso, a novel framework that leverages large language models (LLMs) to guide feature selection in Lasso $\ell_1$ regression. Unlike traditional methods that rely solely on numerical data, LLM-Lasso incorporates domain-specific knowledge extracted from natural language, enhanced through a retrieval-augmented generation (RAG) pipeline, to seamlessly integrate data-driven modeling with contextual insights. Specifically, the LLM generates penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model. Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model, while less relevant features are assigned higher penalties, reducing their influence. Importantly, LLM-Lasso has an internal validation step that determines how much to trust the contextual knowledge in our prediction pipeline. Hence it addresses key challenges in robustness, making it suitable for mitigating potential inaccuracies or hallucinations from the LLM. In various biomedical case studies, LLM-Lasso outperforms standard Lasso and existing feature selection baselines, all while ensuring the LLM operates without prior access to the datasets. To our knowledge, this is the first approach to effectively integrate conventional feature selection techniques directly with LLM-based domain-specific reasoning.
Related papers
- Sequential Large Language Model-Based Hyper-parameter Optimization [0.0]
This study introduces SLLMBO, an innovative framework leveraging large language models (LLMs) for hyper- parameter optimization (HPO)
It incorporates dynamic search space adaptability, enhanced parameter space exploitation, and a novel LLM-tree-structured parzen estimator (LLM-TPE) sampler.
This comprehensive benchmarking evaluates multiple LLMs, including GPT-3.5-Turbo, GPT-4o, Claude-Sonnet-3.5, and Gemini-1.5-Flash.
arXiv Detail & Related papers (2024-10-27T00:50:30Z) - zsLLMCode: An Effective Approach for Functional Code Embedding via LLM with Zero-Shot Learning [6.976968804436321]
Large language models (LLMs) have the capability of zero-shot learning, which does not require training or fine-tuning.
We propose zsLLMCode, a novel approach that generates functional code embeddings using LLMs.
arXiv Detail & Related papers (2024-09-23T01:03:15Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented generation (RAG) is a promising way to improve large language models (LLMs)
We propose a novel method that involves learning scalable and pluggable virtual tokens for RAG.
arXiv Detail & Related papers (2024-05-30T03:44:54Z) - REQUAL-LM: Reliability and Equity through Aggregation in Large Language Models [10.684722193666607]
We introduce REQUAL-LM, a novel method for finding reliable and equitable large language models (LLMs) outputs through aggregation.
Specifically, we develop a Monte Carlo method based on repeated sampling to find a reliable output close to the mean of the underlying distribution of possible outputs.
We formally define the terms such as reliability and bias, and design an equity-aware aggregation to minimize harmful bias while finding a highly reliable output.
arXiv Detail & Related papers (2024-04-17T22:12:41Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
This survey addresses the crucial issue of factuality in Large Language Models (LLMs)
As LLMs find applications across diverse domains, the reliability and accuracy of their outputs become vital.
arXiv Detail & Related papers (2023-10-11T14:18:03Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.