論文の概要: Learning to Explain Air Traffic Situation
- arxiv url: http://arxiv.org/abs/2502.10764v1
- Date: Sat, 15 Feb 2025 11:03:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:09:58.513611
- Title: Learning to Explain Air Traffic Situation
- Title(参考訳): 航空交通状況を説明するための学習
- Authors: Hong-ah Chai, Seokbin Yoon, Keumjin Lee,
- Abstract要約: 本稿では,航空交通状況を説明するための機械学習フレームワークを提案する。
具体的には,トランスフォーマーをベースとした多エージェント軌道モデルを用いて,航空機の時空間移動とそれらの間の社会的相互作用の両方をカプセル化する。
これにより、航空管制官が交通状況をどのように認識し理解しているかを説明できる。
- 参考スコア(独自算出の注目度): 0.6759148939470331
- License:
- Abstract: Understanding how air traffic controllers construct a mental 'picture' of complex air traffic situations is crucial but remains a challenge due to the inherently intricate, high-dimensional interactions between aircraft, pilots, and controllers. Previous work on modeling the strategies of air traffic controllers and their mental image of traffic situations often centers on specific air traffic control tasks or pairwise interactions between aircraft, neglecting to capture the comprehensive dynamics of an air traffic situation. To address this issue, we propose a machine learning-based framework for explaining air traffic situations. Specifically, we employ a Transformer-based multi-agent trajectory model that encapsulates both the spatio-temporal movement of aircraft and social interaction between them. By deriving attention scores from the model, we can quantify the influence of individual aircraft on overall traffic dynamics. This provides explainable insights into how air traffic controllers perceive and understand the traffic situation. Trained on real-world air traffic surveillance data collected from the terminal airspace around Incheon International Airport in South Korea, our framework effectively explicates air traffic situations. This could potentially support and enhance the decision-making and situational awareness of air traffic controllers.
- Abstract(参考訳): 航空交通管制官が複雑な航空交通状況の精神的な「写真」を構築する方法を理解することは重要であるが、航空機、パイロット、および管制官の間の本質的に複雑な高次元の相互作用のため、依然として課題である。
航空管制官の戦略と交通状況の精神的イメージをモデル化する以前の研究は、しばしば特定の航空管制業務や航空機間の相互の相互作用に重点を置いており、航空管制官の総合的な動態を捉えることを無視している。
この問題に対処するために,航空交通状況を説明するための機械学習ベースのフレームワークを提案する。
具体的には,トランスフォーマーをベースとした多エージェント軌道モデルを用いて,航空機の時空間移動とそれら間の社会的相互作用の両方をカプセル化する。
モデルから注目スコアを導出することにより、個々の航空機が全体の交通動態に与える影響を定量化することができる。
これにより、航空管制官が交通状況をどのように認識し理解しているかを説明できる。
韓国の仁川国際空港周辺のターミナル空域から収集した実世界の航空交通監視データに基づいて,我々の枠組みは航空交通状況を効果的に解明する。
これは航空管制官の意思決定と状況認識を支援・強化する可能性がある。
関連論文リスト
- GARLIC: GPT-Augmented Reinforcement Learning with Intelligent Control for Vehicle Dispatching [81.82487256783674]
GARLIC: GPT拡張強化学習のフレームワーク。
本稿では,GPT強化強化学習とインテリジェント制御のフレームワークであるGARLICについて紹介する。
論文 参考訳(メタデータ) (2024-08-19T08:23:38Z) - Integrating spoken instructions into flight trajectory prediction to optimize automation in air traffic control [20.718663626382995]
現在の航空交通管制システムでは、交通予測のための音声指示を考慮できない。
本稿では,制御意図を情報処理ループに統合する自動化パラダイムを提案する。
3段階のプログレッシブ・マルチモーダル・ラーニング・パラダイムを提案する。
論文 参考訳(メタデータ) (2023-05-02T08:28:55Z) - Towards Cooperative Flight Control Using Visual-Attention [61.99121057062421]
本稿では,パイロットと制御システム間の並列自律性を実現するための,視覚に基づくエアガードシステムを提案する。
我々の注意に基づく航空防衛システムは、飛行への関与レベルとパイロットの専門知識と注意のトレードオフをバランスさせることができる。
論文 参考訳(メタデータ) (2022-12-21T15:31:47Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z) - Automating the resolution of flight conflicts: Deep reinforcement
learning in service of air traffic controllers [0.0]
難易度と複雑な航空交通シナリオは、今日の航空交通管制官(ATCO)が使用している戦術的衝突検知・分解(CD&R)ツールよりも高いレベルの自動化を必要とする。
本稿では,各エージェント(飛行士)が他のエージェントと共同でCD&Rタスクを行うマルチエージェント環境でグラフ畳み込み強化学習手法を提案する。
本手法は,運用上の透明性問題に対処するため,利害関係者(航空管制官及び航空管制官)に対して高品質なソリューションを提供することができることを示す。
論文 参考訳(メタデータ) (2022-06-15T09:06:58Z) - Call-sign recognition and understanding for noisy air-traffic
transcripts using surveillance information [72.20674534231314]
航空交通管制(ATC)は、パイロットと航空交通管制官(ATCO)の間の音声による通信に依存している。
コールサインは、各フライトのユニークな識別子として、ATCOによって特定のパイロットに対処するために使用される。
この問題に対処する新しいコールサイン認識・理解システム(CRU)を提案する。
認識器は、ノイズの多いATC文字起こしのコールサインを識別し、標準国際民間航空機関(ICAO)フォーマットに変換するよう訓練されている。
論文 参考訳(メタデータ) (2022-04-13T11:30:42Z) - Wireless-Enabled Asynchronous Federated Fourier Neural Network for
Turbulence Prediction in Urban Air Mobility (UAM) [101.80862265018033]
垂直離着陸機(VTOL)が配車サービスに使用される都市空力(UAM)が提案されている。
UAMでは、航空機はエアロドロムを繋ぐ廊下として知られる指定空域で運用することができる。
GBSと航空機間の信頼性の高い通信網により、UAMは適切に空域を利用することができる。
論文 参考訳(メタデータ) (2021-12-26T14:41:52Z) - A Simplified Framework for Air Route Clustering Based on ADS-B Data [0.0]
本稿では,ADS-Bデータに基づく空港間の典型的な航空路の検出を支援する枠組みを提案する。
実のところ,エアフロー最適化の計算コストを実質的に低減するために,我々の枠組みを考慮に入れることができる。
論文 参考訳(メタデータ) (2021-07-07T08:55:31Z) - An Autonomous Free Airspace En-route Controller using Deep Reinforcement
Learning Techniques [24.59017394648942]
航空機の任意の数の航空機を3次元非構造空域に誘導する航空交通制御モデルが提示される。
その結果,航空交通管制モデルが現実的な交通密度で良好に機能していることが示唆された。
潜在的な衝突の100%を回避し、潜在的な衝突の89.8%を防止して、空域を管理することができる。
論文 参考訳(メタデータ) (2020-07-03T10:37:25Z) - Model-Based Meta-Reinforcement Learning for Flight with Suspended
Payloads [69.21503033239985]
吊り下げられたペイロードの輸送は、自律的な航空車両にとって困難である。
接続後飛行データから数秒以内に変化力学のモデルを学習するメタラーニング手法を提案する。
論文 参考訳(メタデータ) (2020-04-23T17:43:56Z) - A Deep Ensemble Multi-Agent Reinforcement Learning Approach for Air
Traffic Control [5.550794444001022]
本稿では,マルチエージェント強化学習(MARL)を活用し,航空機の速度調整をリアルタイムで提案する知的意思決定フレームワークを提案する。
本システムの目的は,航空交通渋滞の回避,ニアミス状況の改善,到着スケジュールの改善のため,航空交通管制官が航空機に効果的な誘導を行う能力を高めることである。
論文 参考訳(メタデータ) (2020-04-03T06:03:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。