論文の概要: A Distillation-based Future-aware Graph Neural Network for Stock Trend Prediction
- arxiv url: http://arxiv.org/abs/2502.10776v1
- Date: Sat, 15 Feb 2025 11:44:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:13:48.912406
- Title: A Distillation-based Future-aware Graph Neural Network for Stock Trend Prediction
- Title(参考訳): ストックトレンド予測のための蒸留型未来対応グラフニューラルネットワーク
- Authors: Zhipeng Liu, Peibo Duan, Mingyang Geng, Bin Zhang,
- Abstract要約: ストックトレンド予測のための将来のグラフニューラルネットワークフレームワーク(DishFT-GNN)を提案する。
DishFT-GNNは教師モデルと学生モデルを反復的に訓練する。
実世界の2つのデータセット上でDishFT-GNNの最先端性能を検証する。
- 参考スコア(独自算出の注目度): 4.655696097611871
- License:
- Abstract: Stock trend prediction involves forecasting the future price movements by analyzing historical data and various market indicators. With the advancement of machine learning, graph neural networks (GNNs) have been extensively employed in stock prediction due to their powerful capability to capture spatiotemporal dependencies of stocks. However, despite the efforts of various GNN stock predictors to enhance predictive performance, the improvements remain limited, as they focus solely on analyzing historical spatiotemporal dependencies, overlooking the correlation between historical and future patterns. In this study, we propose a novel distillation-based future-aware GNN framework (DishFT-GNN) for stock trend prediction. Specifically, DishFT-GNN trains a teacher model and a student model, iteratively. The teacher model learns to capture the correlation between distribution shifts of historical and future data, which is then utilized as intermediate supervision to guide the student model to learn future-aware spatiotemporal embeddings for accurate prediction. Through extensive experiments on two real-world datasets, we verify the state-of-the-art performance of DishFT-GNN.
- Abstract(参考訳): 株価トレンドの予測には、過去のデータや様々な市場指標を分析して将来の価格変動を予測することが含まれる。
機械学習の進歩に伴い、グラフニューラルネットワーク(GNN)は、ストックの時空間依存を捕捉する強力な能力のために、ストック予測に広く採用されている。
しかし,様々なGNN株価予測器による予測性能の向上にも拘わらず,過去の時空間依存性の分析にのみ焦点を絞って,歴史的パターンと将来のパターンの相関性を見極めながら改善が限られている。
本研究では, 銘柄トレンド予測のための新しい蒸留法に基づく未来型GNNフレームワーク(DishFT-GNN)を提案する。
具体的には、DishFT-GNNは教師モデルと学生モデルを反復的に訓練する。
教師モデルは, 過去のデータと将来のデータの分布変化の相関関係を把握し, 学生モデルを指導し, 将来の時空間埋め込みを正確に予測するために学習する。
2つの実世界のデータセットに関する広範な実験を通じて、DishFT-GNNの最先端性能を検証する。
関連論文リスト
- Future-Guided Learning: A Predictive Approach To Enhance Time-Series Forecasting [4.866362841501992]
本稿では,予測符号化にインスパイアされた動的フィードバック機構を通じて時系列イベント予測を強化するアプローチであるFuture-Guided Learningを紹介する。
本手法は2つのモデルから構成される: 重要事象を識別するために将来のデータを解析する検出モデルと、これらの事象を現在のデータに基づいて予測する予測モデルである。
脳波データを用いた発作予測ではAUC-ROCが44.8%増加し,非線形力学系ではMSEが48.7%減少した。
論文 参考訳(メタデータ) (2024-10-19T21:22:55Z) - GraphCNNpred: A stock market indices prediction using a Graph based deep learning system [0.0]
我々は,テキストS&textP 500,NASDAQ,DJI,NYSE,RASELの指標の傾向を予測するために,さまざまなデータソースに適用可能なグラフニューラルネットワークベースの畳み込みニューラルネットワーク(CNN)モデルを提案する。
実験の結果,F測度の観点からは,ベースラインアルゴリズム上のすべての指標の予測性能が約4%から15%に向上した。
論文 参考訳(メタデータ) (2024-07-04T09:14:24Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - Dynamic Graph Unlearning: A General and Efficient Post-Processing Method via Gradient Transformation [24.20087360102464]
動的グラフアンラーニングを初めて研究し、DGNNアンラーニングを実装するための効率的で効率的で汎用的で後処理手法を提案する。
提案手法は,将来的な未学習要求を処理できる可能性があり,性能が大幅に向上する。
論文 参考訳(メタデータ) (2024-05-23T10:26:18Z) - Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで広く使われている。
しかし、多様な情報源から生じるGNNの予測的不確実性は、不安定で誤った予測につながる可能性がある。
本調査は,不確実性の観点からGNNの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2024-03-11T21:54:52Z) - FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
現在の最先端グラフニューラルネットワーク(GNN)ベースの予測手法は、通常、シリーズ間(空間)のダイナミックスとシリーズ内(時間)の依存関係をキャプチャするために、グラフネットワーク(GCNなど)と時間ネットワーク(LSTMなど)の両方を必要とする。
提案するフーリエグラフ演算子(FGO)を積み重ねて,フーリエ空間で行列乗算を行うことにより,新しいフーリエグラフニューラルネットワーク(FourierGNN)を提案する。
7つのデータセットに対する実験は、より効率が良く、パラメータも少ないという優れた性能を示した。
論文 参考訳(メタデータ) (2023-11-10T17:13:26Z) - Futures Quantitative Investment with Heterogeneous Continual Graph
Neural Network [13.882054287609021]
本研究では,グラフニューラルネットワークに基づく連続学習因子予測器を提案することにより,高周波取引(HFT)における先物価格予測の課題を解決することを目的とする。
このモデルは、マルチ価格理論とリアルタイム市場ダイナミクスを統合し、既存の手法の制限を効果的に回避する。
中国の先物市場における49の商品先物に関する実証実験は、提案されたモデルが予測精度で他の最先端モデルよりも優れていることを示した。
論文 参考訳(メタデータ) (2023-03-29T08:39:36Z) - GCNET: graph-based prediction of stock price movement using graph
convolutional network [8.122270502556372]
GCNETは、その履歴データに基づいて、あらゆる相互作用する株式の価格変動の予測に適用できる一般的な予測フレームワークである。
S&P500 と NASDAQ の在庫セットに関する実験および評価の結果,GCNET はSOTA の性能を精度およびMCC 測定で著しく向上させることが示された。
論文 参考訳(メタデータ) (2022-02-19T16:13:44Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - A Stochastic Time Series Model for Predicting Financial Trends using NLP [4.081440927534578]
近年のディープニューラルネットワーク技術の進歩により、研究者は金融トレンドを予測するための高精度なモデルを開発することができる。
本稿では,ST-GAN (Time-Series Generative Adversarial Network) と呼ばれる新しいディープラーニングモデルを提案する。
我々は、GAN(Generative Adversarial Network)のような最先端技術を用いて、テキストデータと数値データの相関関係を時間とともに学習する。
論文 参考訳(メタデータ) (2021-02-02T04:03:01Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
数発のアウトオブグラフリンク予測という現実的な問題を導入する。
我々は,新しいメタ学習フレームワークによってこの問題に対処する。
我々は,知識グラフの補完と薬物と薬物の相互作用予測のために,複数のベンチマークデータセット上でモデルを検証した。
論文 参考訳(メタデータ) (2020-06-11T17:42:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。