論文の概要: A Stochastic Time Series Model for Predicting Financial Trends using NLP
- arxiv url: http://arxiv.org/abs/2102.01290v1
- Date: Tue, 2 Feb 2021 04:03:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-05 06:16:39.603708
- Title: A Stochastic Time Series Model for Predicting Financial Trends using NLP
- Title(参考訳): NLPを用いた金融トレンド予測のための確率時系列モデル
- Authors: Pratyush Muthukumar, Jie Zhong
- Abstract要約: 近年のディープニューラルネットワーク技術の進歩により、研究者は金融トレンドを予測するための高精度なモデルを開発することができる。
本稿では,ST-GAN (Time-Series Generative Adversarial Network) と呼ばれる新しいディープラーニングモデルを提案する。
我々は、GAN(Generative Adversarial Network)のような最先端技術を用いて、テキストデータと数値データの相関関係を時間とともに学習する。
- 参考スコア(独自算出の注目度): 4.081440927534578
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stock price forecasting is a highly complex and vitally important field of
research. Recent advancements in deep neural network technology allow
researchers to develop highly accurate models to predict financial trends. We
propose a novel deep learning model called ST-GAN, or Stochastic Time-series
Generative Adversarial Network, that analyzes both financial news texts and
financial numerical data to predict stock trends. We utilize cutting-edge
technology like the Generative Adversarial Network (GAN) to learn the
correlations among textual and numerical data over time. We develop a new
method of training a time-series GAN directly using the learned representations
of Naive Bayes' sentiment analysis on financial text data alongside technical
indicators from numerical data. Our experimental results show significant
improvement over various existing models and prior research on deep neural
networks for stock price forecasting.
- Abstract(参考訳): 株価予測は、非常に複雑で非常に重要な研究分野です。
ディープニューラルネットワーク技術の進歩により、研究者は金融トレンドを予測するために高精度なモデルを開発することができる。
ST-GAN(Stochastic Time-Series Generative Adversarial Network)と呼ばれる新しいディープラーニングモデルを提案し、財務ニューステキストと財務数値データの両方を分析して株価動向を予測します。
我々は、GAN(Generative Adversarial Network)のような最先端技術を用いて、テキストデータと数値データの相関関係を時間とともに学習する。
ナイーブ・ベイズの金融テキストデータに対する感情分析の学習表現と、数値データからのテクニカル指標を直接利用し、時系列GANを訓練する新しい方法を開発する。
実験の結果,株価予測のための深層ニューラルネットワークの既存モデルおよび先行研究に対して有意な改善がみられた。
関連論文リスト
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - Deep learning models for price forecasting of financial time series: A
review of recent advancements: 2020-2022 [6.05458608266581]
ディープラーニングモデルは、価格予測タスクのための従来の統計モデルと機械学習モデルを置き換えるものだ。
このレビューは、ディープラーニングに基づく予測モデルについて深く掘り下げ、モデルアーキテクチャ、実践的応用、およびそれぞれの利点と欠点に関する情報を提示する。
この貢献には、価格予測のための複雑な構造を持つディープラーニングモデルの有効性を検討するなど、将来の研究に向けた潜在的方向性も含まれている。
論文 参考訳(メタデータ) (2023-04-21T03:46:09Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Multi-head Temporal Attention-Augmented Bilinear Network for Financial
time series prediction [77.57991021445959]
本稿では,時間的注意と多面的注意の考え方に基づいて,ニューラルネットワークの能力を拡張するニューラルネットワーク層を提案する。
本手法の有効性を,大規模書籍市場データを用いて検証した。
論文 参考訳(メタデータ) (2022-01-14T14:02:19Z) - Bilinear Input Normalization for Neural Networks in Financial
Forecasting [101.89872650510074]
本稿では,高頻度金融時系列を扱うディープニューラルネットワークのための新しいデータ駆動正規化手法を提案する。
提案手法は,財務時系列のバイモーダル特性を考慮したものである。
我々の実験は最先端のニューラルネットワークと高周波データを用いて行われ、他の正規化技術よりも大幅に改善された。
論文 参考訳(メタデータ) (2021-09-01T07:52:03Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
ディープラーニングモデルは、金融時系列データの予測問題など、さまざまな領域から来る多くの問題において、大幅なパフォーマンス改善をもたらしている。
近年,制限順序書の時系列予測の効率的かつ高性能なモデルとして,時間的注意強化バイリニアネットワークが提案されている。
本稿では,モデルの低ランクテンソル近似を提案し,トレーニング可能なパラメータの数をさらに削減し,その速度を向上する。
論文 参考訳(メタデータ) (2021-07-05T10:15:23Z) - Financial Markets Prediction with Deep Learning [11.26482563151052]
金融市場の動きを予測する新しい1次元畳み込みニューラルネットワーク(CNN)モデルを提案する。
カスタマイズされた1次元畳み込み層は、時間を通じて金融取引データをスキャンし、価格やボリュームなどの異なる種類のデータ、共有パラメータ(カーネル)を互いに共有する。
我々のモデルは従来の技術指標の代わりに自動的に特徴を抽出する。
論文 参考訳(メタデータ) (2021-04-05T19:36:48Z) - Deep Neural Networks and Neuro-Fuzzy Networks for Intellectual Analysis
of Economic Systems [0.0]
本稿では,ディープニューラルネットワークとニューロファジィネットに基づく時系列予測手法を提案する。
本稿では,ルールベースの方法論をディープラーニングニューラルネットワークに組み込むためのアプローチについても概説する。
論文 参考訳(メタデータ) (2020-11-11T06:21:08Z) - Deep Learning Based on Generative Adversarial and Convolutional Neural
Networks for Financial Time Series Predictions [0.0]
本稿では、双方向長短期記憶(LSTM)と畳み込みニューラルネットワーク(CNN)により構成されるGAN(generative adversarial Network)の実装を提案する。
Bi-LSTM-CNNは、既存の実際の財務データと一致する合成データを生成するため、株価の将来動向を予測するために、正または負の傾向を持つ株の特徴を保持することができる。
論文 参考訳(メタデータ) (2020-08-08T08:42:46Z) - A Novel Ensemble Deep Learning Model for Stock Prediction Based on Stock
Prices and News [7.578363431637128]
本稿では、感情分析を用いて、複数のテキストデータソースから有用な情報を抽出し、将来のストックムーブメントを予測することを提案する。
ブレンディングアンサンブルモデルには、2つのレベルがある。第1レベルには、2つのリカレントニューラルネットワーク(RNN)、1つのLong-Short Term Memory Network(LSTM)、1つのGated Recurrent Units Network(GRU)が含まれる。
完全に接続されたニューラルネットワークは、予測精度をさらに向上するために、複数の個々の予測結果をアンサンブルするために使用される。
論文 参考訳(メタデータ) (2020-07-23T15:25:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。