HybriDNA: A Hybrid Transformer-Mamba2 Long-Range DNA Language Model
- URL: http://arxiv.org/abs/2502.10807v2
- Date: Tue, 18 Feb 2025 02:00:07 GMT
- Title: HybriDNA: A Hybrid Transformer-Mamba2 Long-Range DNA Language Model
- Authors: Mingqian Ma, Guoqing Liu, Chuan Cao, Pan Deng, Tri Dao, Albert Gu, Peiran Jin, Zhao Yang, Yingce Xia, Renqian Luo, Pipi Hu, Zun Wang, Yuan-Jyue Chen, Haiguang Liu, Tao Qin,
- Abstract summary: We propose HybriDNA, a decoder-only DNA language model that incorporates a hybrid Transformer-Mamba2 architecture.
This hybrid design enables HybriDNA to efficiently process DNA sequences up to 131kb in length with single-nucleotide resolution.
HybriDNA achieves state-of-the-art performance across 33 DNA understanding datasets curated from the BEND, GUE, and LRB benchmarks.
- Score: 70.69095062674944
- License:
- Abstract: Advances in natural language processing and large language models have sparked growing interest in modeling DNA, often referred to as the "language of life". However, DNA modeling poses unique challenges. First, it requires the ability to process ultra-long DNA sequences while preserving single-nucleotide resolution, as individual nucleotides play a critical role in DNA function. Second, success in this domain requires excelling at both generative and understanding tasks: generative tasks hold potential for therapeutic and industrial applications, while understanding tasks provide crucial insights into biological mechanisms and diseases. To address these challenges, we propose HybriDNA, a decoder-only DNA language model that incorporates a hybrid Transformer-Mamba2 architecture, seamlessly integrating the strengths of attention mechanisms with selective state-space models. This hybrid design enables HybriDNA to efficiently process DNA sequences up to 131kb in length with single-nucleotide resolution. HybriDNA achieves state-of-the-art performance across 33 DNA understanding datasets curated from the BEND, GUE, and LRB benchmarks, and demonstrates exceptional capability in generating synthetic cis-regulatory elements (CREs) with desired properties. Furthermore, we show that HybriDNA adheres to expected scaling laws, with performance improving consistently as the model scales from 300M to 3B and 7B parameters. These findings underscore HybriDNA's versatility and its potential to advance DNA research and applications, paving the way for innovations in understanding and engineering the "language of life".
Related papers
- Life-Code: Central Dogma Modeling with Multi-Omics Sequence Unification [53.488387420073536]
Life-Code is a comprehensive framework that spans different biological functions.
Life-Code achieves state-of-the-art performance on various tasks across three omics.
arXiv Detail & Related papers (2025-02-11T06:53:59Z) - GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
We present a generative genomic foundation model featuring a context length of 98k base pairs (bp) and 1.2B parameters.
The model adheres to the central dogma of molecular biology, accurately generating protein-coding sequences.
It also shows significant promise in sequence optimization, particularly through the prompt-responsive generation of promoter sequences.
arXiv Detail & Related papers (2025-02-11T05:39:49Z) - Model Decides How to Tokenize: Adaptive DNA Sequence Tokenization with MxDNA [44.630039477717624]
MxDNA is a novel framework where the model autonomously learns an effective DNA tokenization strategy through gradient decent.
We show that MxDNA learns unique tokenization strategy distinct to those of previous methods and captures genomic functionalities at a token level during self-supervised pretraining.
arXiv Detail & Related papers (2024-12-18T10:55:43Z) - DART-Eval: A Comprehensive DNA Language Model Evaluation Benchmark on Regulatory DNA [2.543784712990392]
Large genomic DNA language models (DNALMs) aim to learn generalizable representations of diverse DNA elements.
Our benchmarks target biologically meaningful downstream tasks such as functional sequence feature discovery, predicting cell-type specific regulatory activity, and counterfactual prediction of the impacts of genetic variants.
arXiv Detail & Related papers (2024-12-06T21:23:35Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNA is a general-purpose framework that renovates genome tokenization from the perspective of genome vocabulary learning.
By leveraging vector-quantized codebooks as learnable vocabulary, VQDNA can adaptively tokenize genomes into pattern-aware embeddings.
arXiv Detail & Related papers (2024-05-13T20:15:03Z) - BEND: Benchmarking DNA Language Models on biologically meaningful tasks [7.005668635562045]
We introduce BEND, a Benchmark for DNA language models, featuring a collection of realistic and biologically meaningful downstream tasks.
We find that embeddings from current DNA LMs can approach performance of expert methods on some tasks, but only capture limited information about long-range features.
arXiv Detail & Related papers (2023-11-21T12:34:00Z) - DNAGPT: A Generalized Pre-trained Tool for Versatile DNA Sequence
Analysis Tasks [14.931476374660944]
DNAGPT is a generalized DNA pre-training model trained on over 200 billion base pairs from all mammals.
By enhancing the classic GPT model with a binary classification task, a numerical regression task, and a comprehensive token language, DNAGPT can handle versatile DNA analysis tasks.
arXiv Detail & Related papers (2023-07-11T06:30:43Z) - HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide
Resolution [76.97231739317259]
We present HyenaDNA, a genomic foundation model pretrained on the human reference genome with context lengths of up to 1 million tokens at the single nucleotide-level.
On fine-tuned benchmarks from the Nucleotide Transformer, HyenaDNA reaches state-of-the-art (SotA) on 12 of 18 datasets using a model with orders of magnitude less parameters and pretraining data.
arXiv Detail & Related papers (2023-06-27T20:46:34Z) - Efficient approximation of DNA hybridisation using deep learning [0.0]
We present the first comprehensive study of machine learning methods applied to the task of predicting DNA hybridisation.
We introduce a synthetic hybridisation dataset of over 2.5 million data points, enabling the use of a wide range of machine learning algorithms.
arXiv Detail & Related papers (2021-02-19T19:23:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.