Regulatory DNA sequence Design with Reinforcement Learning
- URL: http://arxiv.org/abs/2503.07981v1
- Date: Tue, 11 Mar 2025 02:33:33 GMT
- Title: Regulatory DNA sequence Design with Reinforcement Learning
- Authors: Zhao Yang, Bing Su, Chuan Cao, Ji-Rong Wen,
- Abstract summary: We propose a generative approach that leverages reinforcement learning to fine-tune a pre-trained autoregressive model.<n>We evaluate our method on promoter design tasks in two yeast media conditions and enhancer design tasks for three human cell types.
- Score: 56.20290878358356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cis-regulatory elements (CREs), such as promoters and enhancers, are relatively short DNA sequences that directly regulate gene expression. The fitness of CREs, measured by their ability to modulate gene expression, highly depends on the nucleotide sequences, especially specific motifs known as transcription factor binding sites (TFBSs). Designing high-fitness CREs is crucial for therapeutic and bioengineering applications. Current CRE design methods are limited by two major drawbacks: (1) they typically rely on iterative optimization strategies that modify existing sequences and are prone to local optima, and (2) they lack the guidance of biological prior knowledge in sequence optimization. In this paper, we address these limitations by proposing a generative approach that leverages reinforcement learning (RL) to fine-tune a pre-trained autoregressive (AR) model. Our method incorporates data-driven biological priors by deriving computational inference-based rewards that simulate the addition of activator TFBSs and removal of repressor TFBSs, which are then integrated into the RL process. We evaluate our method on promoter design tasks in two yeast media conditions and enhancer design tasks for three human cell types, demonstrating its ability to generate high-fitness CREs while maintaining sequence diversity. The code is available at https://github.com/yangzhao1230/TACO.
Related papers
- HybriDNA: A Hybrid Transformer-Mamba2 Long-Range DNA Language Model [70.69095062674944]
We propose HybriDNA, a decoder-only DNA language model that incorporates a hybrid Transformer-Mamba2 architecture.
This hybrid design enables HybriDNA to efficiently process DNA sequences up to 131kb in length with single-nucleotide resolution.
HybriDNA achieves state-of-the-art performance across 33 DNA understanding datasets curated from the BEND, GUE, and LRB benchmarks.
arXiv Detail & Related papers (2025-02-15T14:23:43Z) - GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
We present GENERator, a generative genomic foundation model featuring a context length of 98k base pairs (bp) and 1.2B parameters.<n>Trained on an expansive dataset comprising 386B bp of DNA, the GENERator demonstrates state-of-the-art performance across both established and newly proposed benchmarks.<n>It also shows significant promise in sequence optimization, particularly through the prompt-responsive generation of enhancer sequences with specific activity profiles.
arXiv Detail & Related papers (2025-02-11T05:39:49Z) - DART-Eval: A Comprehensive DNA Language Model Evaluation Benchmark on Regulatory DNA [2.543784712990392]
Large genomic DNA language models (DNALMs) aim to learn generalizable representations of diverse DNA elements.
Our benchmarks target biologically meaningful downstream tasks such as functional sequence feature discovery, predicting cell-type specific regulatory activity, and counterfactual prediction of the impacts of genetic variants.
arXiv Detail & Related papers (2024-12-06T21:23:35Z) - RNACG: A Universal RNA Sequence Conditional Generation model based on Flow-Matching [0.0]
We propose RNACG (RNA Generator), a universal framework for RNA sequence design based on flow matching.<n>By unifying sequence generation under a single framework, RNACG enables the integration of multiple RNA design paradigms.
arXiv Detail & Related papers (2024-07-29T09:46:46Z) - xTrimoPGLM: Unified 100B-Scale Pre-trained Transformer for Deciphering the Language of Protein [74.64101864289572]
We propose a unified protein language model, xTrimoPGLM, to address protein understanding and generation tasks simultaneously.<n>xTrimoPGLM significantly outperforms other advanced baselines in 18 protein understanding benchmarks across four categories.<n>It can also generate de novo protein sequences following the principles of natural ones, and can perform programmable generation after supervised fine-tuning.
arXiv Detail & Related papers (2024-01-11T15:03:17Z) - Reinforced Genetic Algorithm for Structure-based Drug Design [38.134929249388406]
Structure-based drug design (SBDD) aims to discover drug candidates by finding molecules that bind to a disease-related protein (targets)
We propose Reinforced Genetic Algorithm (RGA) that uses neural models to prioritize the profitable design steps and suppress random-walk behavior.
arXiv Detail & Related papers (2022-11-28T22:59:46Z) - Diversifying Design of Nucleic Acid Aptamers Using Unsupervised Machine
Learning [54.247560894146105]
Inverse design of short single-stranded RNA and DNA sequences (aptamers) is the task of finding sequences that satisfy a set of desired criteria.
We propose to use an unsupervised machine learning model known as the Potts model to discover new, useful sequences with controllable sequence diversity.
arXiv Detail & Related papers (2022-08-10T13:30:58Z) - Epigenomic language models powered by Cerebras [0.0]
Epigenomic BERT (or EBERT) learns representations based on both DNA sequence and paired epigenetic state inputs.
We show EBERT's transfer learning potential by demonstrating strong performance on a cell type-specific transcription factor binding prediction task.
Our fine-tuned model exceeds state of the art performance on 4 of 13 evaluation datasets from ENCODE-DREAM benchmarks and earns an overall rank of 3rd on the challenge leaderboard.
arXiv Detail & Related papers (2021-12-14T17:23:42Z) - Multi-modal Self-supervised Pre-training for Regulatory Genome Across
Cell Types [75.65676405302105]
We propose a simple yet effective approach for pre-training genome data in a multi-modal and self-supervised manner, which we call GeneBERT.
We pre-train our model on the ATAC-seq dataset with 17 million genome sequences.
arXiv Detail & Related papers (2021-10-11T12:48:44Z) - Comparison of machine learning and deep learning techniques in promoter
prediction across diverse species [1.8899300124593648]
We studied methods for vector encoding and promoter classification using genome sequences of three higher eukaryotes viz. yeast, A. thaliana and human.
We found CNN to be superior in classification of promoters from non-promoter sequences (binary classification) as well as species-specific classification of promoter sequences (multiclass classification)
arXiv Detail & Related papers (2021-05-17T08:15:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.