DART-Eval: A Comprehensive DNA Language Model Evaluation Benchmark on Regulatory DNA
- URL: http://arxiv.org/abs/2412.05430v1
- Date: Fri, 06 Dec 2024 21:23:35 GMT
- Title: DART-Eval: A Comprehensive DNA Language Model Evaluation Benchmark on Regulatory DNA
- Authors: Aman Patel, Arpita Singhal, Austin Wang, Anusri Pampari, Maya Kasowski, Anshul Kundaje,
- Abstract summary: Large genomic DNA language models (DNALMs) aim to learn generalizable representations of diverse DNA elements.
Our benchmarks target biologically meaningful downstream tasks such as functional sequence feature discovery, predicting cell-type specific regulatory activity, and counterfactual prediction of the impacts of genetic variants.
- Score: 2.543784712990392
- License:
- Abstract: Recent advances in self-supervised models for natural language, vision, and protein sequences have inspired the development of large genomic DNA language models (DNALMs). These models aim to learn generalizable representations of diverse DNA elements, potentially enabling various genomic prediction, interpretation and design tasks. Despite their potential, existing benchmarks do not adequately assess the capabilities of DNALMs on key downstream applications involving an important class of non-coding DNA elements critical for regulating gene activity. In this study, we introduce DART-Eval, a suite of representative benchmarks specifically focused on regulatory DNA to evaluate model performance across zero-shot, probed, and fine-tuned scenarios against contemporary ab initio models as baselines. Our benchmarks target biologically meaningful downstream tasks such as functional sequence feature discovery, predicting cell-type specific regulatory activity, and counterfactual prediction of the impacts of genetic variants. We find that current DNALMs exhibit inconsistent performance and do not offer compelling gains over alternative baseline models for most tasks, while requiring significantly more computational resources. We discuss potentially promising modeling, data curation, and evaluation strategies for the next generation of DNALMs. Our code is available at https://github.com/kundajelab/DART-Eval.
Related papers
- HybriDNA: A Hybrid Transformer-Mamba2 Long-Range DNA Language Model [70.69095062674944]
We propose HybriDNA, a decoder-only DNA language model that incorporates a hybrid Transformer-Mamba2 architecture.
This hybrid design enables HybriDNA to efficiently process DNA sequences up to 131kb in length with single-nucleotide resolution.
HybriDNA achieves state-of-the-art performance across 33 DNA understanding datasets curated from the BEND, GUE, and LRB benchmarks.
arXiv Detail & Related papers (2025-02-15T14:23:43Z) - GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
We present a generative genomic foundation model featuring a context length of 98k base pairs (bp) and 1.2B parameters.
The model adheres to the central dogma of molecular biology, accurately generating protein-coding sequences.
It also shows significant promise in sequence optimization, particularly through the prompt-responsive generation of promoter sequences.
arXiv Detail & Related papers (2025-02-11T05:39:49Z) - Model Decides How to Tokenize: Adaptive DNA Sequence Tokenization with MxDNA [44.630039477717624]
MxDNA is a novel framework where the model autonomously learns an effective DNA tokenization strategy through gradient decent.
We show that MxDNA learns unique tokenization strategy distinct to those of previous methods and captures genomic functionalities at a token level during self-supervised pretraining.
arXiv Detail & Related papers (2024-12-18T10:55:43Z) - A Benchmark Dataset for Multimodal Prediction of Enzymatic Function Coupling DNA Sequences and Natural Language [3.384797724820242]
Predicting gene function from its DNA sequence is a fundamental challenge in biology.
Deep learning models have been proposed to embed DNA sequences and predict their enzymatic function.
Much of the scientific community's knowledge of biological function is not represented in categorical labels.
arXiv Detail & Related papers (2024-07-21T19:27:43Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNA is a general-purpose framework that renovates genome tokenization from the perspective of genome vocabulary learning.
By leveraging vector-quantized codebooks as learnable vocabulary, VQDNA can adaptively tokenize genomes into pattern-aware embeddings.
arXiv Detail & Related papers (2024-05-13T20:15:03Z) - BEND: Benchmarking DNA Language Models on biologically meaningful tasks [7.005668635562045]
We introduce BEND, a Benchmark for DNA language models, featuring a collection of realistic and biologically meaningful downstream tasks.
We find that embeddings from current DNA LMs can approach performance of expert methods on some tasks, but only capture limited information about long-range features.
arXiv Detail & Related papers (2023-11-21T12:34:00Z) - DNAGPT: A Generalized Pre-trained Tool for Versatile DNA Sequence
Analysis Tasks [14.931476374660944]
DNAGPT is a generalized DNA pre-training model trained on over 200 billion base pairs from all mammals.
By enhancing the classic GPT model with a binary classification task, a numerical regression task, and a comprehensive token language, DNAGPT can handle versatile DNA analysis tasks.
arXiv Detail & Related papers (2023-07-11T06:30:43Z) - Epigenomic language models powered by Cerebras [0.0]
Epigenomic BERT (or EBERT) learns representations based on both DNA sequence and paired epigenetic state inputs.
We show EBERT's transfer learning potential by demonstrating strong performance on a cell type-specific transcription factor binding prediction task.
Our fine-tuned model exceeds state of the art performance on 4 of 13 evaluation datasets from ENCODE-DREAM benchmarks and earns an overall rank of 3rd on the challenge leaderboard.
arXiv Detail & Related papers (2021-12-14T17:23:42Z) - Multi-modal Self-supervised Pre-training for Regulatory Genome Across
Cell Types [75.65676405302105]
We propose a simple yet effective approach for pre-training genome data in a multi-modal and self-supervised manner, which we call GeneBERT.
We pre-train our model on the ATAC-seq dataset with 17 million genome sequences.
arXiv Detail & Related papers (2021-10-11T12:48:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.