論文の概要: MET-Bench: Multimodal Entity Tracking for Evaluating the Limitations of Vision-Language and Reasoning Models
- arxiv url: http://arxiv.org/abs/2502.10886v1
- Date: Sat, 15 Feb 2025 19:39:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:13:08.514517
- Title: MET-Bench: Multimodal Entity Tracking for Evaluating the Limitations of Vision-Language and Reasoning Models
- Title(参考訳): MET-Bench:ビジョンランゲージと推論モデルの限界評価のためのマルチモーダルエンティティトラッキング
- Authors: Vanya Cohen, Raymond Mooney,
- Abstract要約: MET-Benchは、視覚言語モデルがモーダル性にまたがる実体状態を追跡する能力を評価するために設計されたベンチマークである。
以上の結果から,テキストベースと画像ベーストラッキングの差は顕著であり,この差は知覚よりも視覚的推論の欠如に起因していることが明らかとなった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Entity tracking is a fundamental challenge in natural language understanding, requiring models to maintain coherent representations of entities. Previous work has benchmarked entity tracking performance in purely text-based tasks. We introduce MET-Bench, a multimodal entity tracking benchmark designed to evaluate the ability of vision-language models to track entity states across modalities. Using two structured domains, Chess and the Shell Game, we assess how effectively current models integrate textual and image-based state updates. Our findings reveal a significant performance gap between text-based and image-based tracking and that this performance gap stems from deficits in visual reasoning rather than perception. We further show that explicit text-based reasoning strategies improve performance, yet substantial limitations remain, especially in long-horizon multimodal scenarios. Our results highlight the need for improved multimodal representations and reasoning techniques to bridge the gap between textual and visual entity tracking.
- Abstract(参考訳): エンティティの追跡は自然言語理解における根本的な課題であり、モデルはエンティティの一貫性のある表現を維持する必要がある。
以前の作業は、純粋にテキストベースのタスクでエンティティトラッキングのパフォーマンスをベンチマークした。
本稿では,マルチモーダルなエンティティ追跡ベンチマークであるMET-Benchを紹介する。
ChessとShell Gameという2つの構造化されたドメインを用いて、現在のモデルがテキストと画像ベースの状態更新をどのように効果的に統合するかを評価する。
以上の結果から,テキストベースと画像ベーストラッキングの差は顕著であり,この差は知覚よりも視覚的推論の欠如に起因していることが明らかとなった。
さらに,テキストに基づく明示的な推論手法により,パフォーマンスが向上するが,特に長期的マルチモーダルシナリオにおいては,かなりの制限が残っていることを示す。
本結果は,テキストと視覚的実体追跡のギャップを埋めるために,改良されたマルチモーダル表現と推論技術の必要性を強調した。
関連論文リスト
- IP-MOT: Instance Prompt Learning for Cross-Domain Multi-Object Tracking [13.977088329815933]
マルチオブジェクト追跡(MOT)は、ビデオフレーム間で複数のオブジェクトを関連付けることを目的としている。
既存のアプローチのほとんどは単一のドメイン内でトレーニングと追跡を行っており、結果としてドメイン間の一般化性が欠如している。
我々は,具体的テキスト記述なしで動作可能なMOTのエンドツーエンドトランスフォーマモデルであるIP-MOTを開発した。
論文 参考訳(メタデータ) (2024-10-30T14:24:56Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
視覚的コンテキスト獲得と論理的推論の集約は、視覚的推論タスクに取り組む上で重要であると我々は主張する。
我々はCantorと呼ばれる革新的なマルチモーダルCoTフレームワークを提案し、その特徴は知覚決定アーキテクチャである。
提案手法の有効性を実証し,マルチモーダルCoT性能の大幅な向上を示した。
論文 参考訳(メタデータ) (2024-04-24T17:59:48Z) - CODIS: Benchmarking Context-Dependent Visual Comprehension for Multimodal Large Language Models [58.95889895912716]
我々は、自由形式のテキストで提供されるコンテキストを用いて視覚的理解を高めるモデルの有効性を評価するために、CODISと名付けられた新しいベンチマークを導入する。
以上の結果から,MLLMは必ずしも人体性能に劣っていることが示唆された。
このことは、MLLMが視覚を文脈依存的に理解する能力を高めることの必要性を浮き彫りにする。
論文 参考訳(メタデータ) (2024-02-21T08:21:12Z) - ConTextual: Evaluating Context-Sensitive Text-Rich Visual Reasoning in Large Multimodal Models [92.60282074937305]
テキストリッチな画像に対して文脈に敏感な推論を必要とする人為的な命令を特徴とする新しいデータセットであるConTextualを紹介した。
そこで本研究では,14の基盤モデルの性能評価実験を行い,人為的な性能基準を確立する。
GPT-4Vとヒトのパフォーマンスの30.8%の有意な性能差を観察した。
論文 参考訳(メタデータ) (2024-01-24T09:07:11Z) - Towards More Unified In-context Visual Understanding [74.55332581979292]
マルチモーダル出力を有効にした視覚理解のための新しいICLフレームワークを提案する。
まず、テキストと視覚的プロンプトの両方を量子化し、統一された表現空間に埋め込む。
次にデコーダのみのスパーストランスアーキテクチャを用いて生成モデリングを行う。
論文 参考訳(メタデータ) (2023-12-05T06:02:21Z) - A Multi-Modal Context Reasoning Approach for Conditional Inference on
Joint Textual and Visual Clues [23.743431157431893]
共同文と視覚的手がかりの条件推論は多モーダル推論タスクである。
我々はModCRというマルチモーダルコンテキスト推論手法を提案する。
2つの対応するデータセットに対して広範囲な実験を行い、実験結果により性能が大幅に向上した。
論文 参考訳(メタデータ) (2023-05-08T08:05:40Z) - Do Vision-and-Language Transformers Learn Grounded Predicate-Noun
Dependencies? [0.06299766708197882]
制御されたセットアップにおける述語-名詞の依存関係の理解を評価することを目的とした新しいタスクを作成する。
我々は,最先端モデルの評価を行い,そのタスクにおける性能がかなり異なることを確認した。
本研究は,視覚・言語モデルにおけるマルチモーダル知識の正確かつ厳密なテストにおいて,ターゲット評価と制御評価が重要なステップであることを示す。
論文 参考訳(メタデータ) (2022-10-21T16:07:00Z) - MAF: Multimodal Alignment Framework for Weakly-Supervised Phrase
Grounding [74.33171794972688]
本稿では,詳細な視覚表現と視覚認識言語表現を活用することで,句オブジェクトの関連性をモデル化するアルゴリズムを提案する。
広く採用されているFlickr30kデータセットで実施された実験は、既存の弱教師付き手法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2020-10-12T00:43:52Z) - Improving Image Captioning with Better Use of Captions [65.39641077768488]
本稿では,画像表現とキャプション生成の両方を強化するために,キャプションで利用可能なセマンティクスをよりよく探求するための新しい画像キャプションアーキテクチャを提案する。
我々のモデルはまず,弱教師付きマルチインスタンス学習を用いて,有益な帰納バイアスをもたらすキャプション誘導型視覚関係グラフを構築した。
生成期間中、このモデルは、単語とオブジェクト/述語タグのシーケンスを共同で予測するために、マルチタスク学習を用いた視覚関係をさらに取り入れる。
論文 参考訳(メタデータ) (2020-06-21T14:10:47Z) - Cross-Modality Relevance for Reasoning on Language and Vision [22.41781462637622]
本研究は,視覚的質問応答(VQA)や視覚的推論(NLVR)などの下流課題に対する,言語と視覚データに対する学習と推論の課題を扱う。
我々は,目的タスクの監督の下で,様々な入力モダリティのコンポーネント間の関連性表現を学習するために,エンドツーエンドフレームワークで使用される新しいクロスモーダル関連モジュールを設計する。
提案手法は,公開ベンチマークを用いた2つの異なる言語および視覚タスクの競合性能を示し,その結果を改良する。
論文 参考訳(メタデータ) (2020-05-12T20:17:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。