論文の概要: Exploring Contextual Flux in Large Language Models: A Novel Approach to Self-Modulating Semantic Networks
- arxiv url: http://arxiv.org/abs/2502.10942v1
- Date: Sun, 16 Feb 2025 01:08:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:13:06.267444
- Title: Exploring Contextual Flux in Large Language Models: A Novel Approach to Self-Modulating Semantic Networks
- Title(参考訳): 大規模言語モデルにおける文脈フラックスの探索:自己制御セマンティックネットワークへの新しいアプローチ
- Authors: Henry Evidail, Zachary Mountebank, Alistair Hathersage, Peter Stanhope, Basil Ravenscroft, Tobias Waddingham,
- Abstract要約: 自己変調機構は言語モデル内で動的適応機能を導入する。
コンテキスト適応戦略は、拡張シーケンスにわたるトークン埋め込み軌跡に影響を与える。
自己規制は、生成の柔軟性を維持しながら、テキスト生成の一貫性を高める。
適応的な埋め込み更新はコヒーレンスの特定の側面を改善するが、その影響はモデルのキャパシティと入力の複雑さに及ばない。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Self-modulating mechanisms introduce dynamic adaptation capabilities within language models through contextual realignment strategies that influence token embedding trajectories across extended sequences. Contextual Flux is explored as an approach to embedding modulation, integrating an auxiliary gating mechanism within the self-attention framework to dynamically adjust token representations based on evolving contextual dependencies. The empirical analysis evaluates entropy variations, latent space realignments, and coherence stability to assess the extent to which self-regulation enhances text generation consistency while preserving generative flexibility. Quantitative assessments suggest that embedding shifts contribute to more structured adaptation in long-form sequences, with measured reductions in redundant phrase repetitions and improvements in thematic retention. Variability in contextual weight computation affects modulation stability, leading to differing levels of adaptation across diverse linguistic structures. The computational demands introduced through real-time embedding reconfiguration are examined in relation to model scalability, emphasizing the need for optimization strategies in high-volume generative applications. The findings suggest that while adaptive embedding updates improve certain aspects of coherence, their impact remains contingent on model capacity and input complexity.
- Abstract(参考訳): 自己変調機構は、拡張シーケンスにまたがるトークン埋め込み軌跡に影響を与えるコンテキスト認識戦略を通じて、言語モデル内の動的適応機能を導入する。
コンテキストフラックスは変調を埋め込むアプローチとして検討され、自己アテンションフレームワークに補助ゲーティング機構を統合して、進化するコンテキスト依存に基づいてトークン表現を動的に調整する。
実験により, エントロピー変動, 潜時空間配向, コヒーレンス安定性を評価し, 生成柔軟性を維持しつつ, 自己制御がテキスト生成の一貫性を高める程度を評価する。
定量的評価では、埋め込みシフトが長文列におけるより構造化された適応に寄与し、冗長な句繰り返しの減少と主題的保持の改善が示唆されている。
文脈重み計算の変数は変調安定性に影響を与え、多様な言語構造にまたがる適応のレベルが異なる。
実時間埋め込み再構成による計算要求は, モデル拡張性に関連して検討され, 大量生成アプリケーションにおける最適化戦略の必要性を強調した。
適応的な埋め込み更新はコヒーレンスの特定の側面を改善するが、それらの影響はモデルのキャパシティと入力の複雑さに相変わらず及んでいることが示唆された。
関連論文リスト
- Lexical Manifold Reconfiguration in Large Language Models: A Novel Architectural Approach for Contextual Modulation [0.0]
連続的な幾何学的変換を通じてトークン埋め込みを動的に再構成するための構造化手法を開発した。
多様体をベースとした変換機構は、語彙的位置決めを規制するために統合され、埋め込みは制御されたシフトを受けることができる。
経験的評価により, 組込み再構成は難易度低減, 語彙コヒーレンスの改善, 文レベルの連続性の向上に寄与した。
論文 参考訳(メタデータ) (2025-02-12T22:11:07Z) - Latent Convergence Modulation in Large Language Models: A Novel Approach to Iterative Contextual Realignment [0.0]
隠れ状態遷移を制御する構造変調機構が導入された。
格子調整は、パープレキシティ変動、エントロピー分散、および語彙不安定の低減に寄与した。
論文 参考訳(メタデータ) (2025-02-10T09:46:33Z) - Context-Preserving Gradient Modulation for Large Language Models: A Novel Approach to Semantic Consistency in Long-Form Text Generation [0.19791587637442667]
文脈的関連性に応じてパラメータ更新を動的に調整する新しい変調勾配法が導入された。
提案手法は,計算オーバーヘッドを著しく抑えることなく,モデル生成物語の安定性を向上させる。
論文 参考訳(メタデータ) (2025-02-05T22:13:06Z) - Contextual Morphogenesis in Large Language Models: A Novel Approach to Self-Organizing Token Representations [0.0]
文脈形態形成は、学習された文脈依存に基づいてトークン境界を再構成する自己組織化機構を確立する。
経験的評価は、動的に調整されたトークン化が表現安定性を維持しながら複雑度を低下させることを示す。
異なる言語コーパス間の比較評価は、適応的トークン化は解釈可能性を維持しつつ、文脈的手がかりとの整合性を改善することを示唆している。
構造安定性の精製と予測性能における文脈形態形成の有効性は、従来のトークン化法に代わるものとしての生存性を強調している。
論文 参考訳(メタデータ) (2025-02-01T03:50:46Z) - Structural Embedding Projection for Contextual Large Language Model Inference [0.0]
構造化埋め込み変換は、言語モデル推論の効率性と一貫性を高めるための有望なアプローチを提供する。
構造埋め込み射影 (Structure Embedding Projection, SEP) の数学的定式化により、埋め込み空間は構造化された文脈関係を捉えることができる。
語彙の多様性に対するSEPの影響は、埋め込み修飾がモデルの語彙使用に影響を与えることを示唆している。
論文 参考訳(メタデータ) (2025-01-31T00:46:21Z) - Strengthening Structural Inductive Biases by Pre-training to Perform Syntactic Transformations [75.14793516745374]
中間学習によりトランスフォーマーの構造的帰納バイアスを強化することを提案する。
実験の結果,チャンキングなどの構文的タスクのわずかな学習に有効であることが確認された。
分析の結果,中間的事前学習は,どのトークンにシナティクス変換を適用する必要があるかを追尾する注意を喚起することが明らかとなった。
論文 参考訳(メタデータ) (2024-07-05T14:29:44Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
大規模言語モデル(LLM)は、対話的な意思決定タスクにおいてインテリジェントなエージェントとして期待されている。
本稿では,トークンレベルでのLLMの最適化に適したエントロピー拡張RL法である,エントロピー正規化トークンレベル最適化(ETPO)を導入する。
我々は,データサイエンスコード生成を多段階対話型タスクのシリーズとしてモデル化したシミュレーション環境におけるETPOの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-09T07:45:26Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
本稿では,空間アグリゲーション機能の拡張に焦点をあて,動的カーネルベースの変換符号化を提案する。
提案したアダプティブアグリゲーションはカーネルオフセットを生成し、コンテント条件付き範囲の有効な情報をキャプチャして変換を支援する。
実験により,本手法は,最先端の学習手法と比較して,3つのベンチマークにおいて高い速度歪み性能が得られることを示した。
論文 参考訳(メタデータ) (2023-08-17T01:34:51Z) - Adaptive Discrete Communication Bottlenecks with Dynamic Vector
Quantization [76.68866368409216]
入力に条件付けされた離散化の厳密度を動的に選択する学習を提案する。
コミュニケーションボトルネックの動的に変化する厳密さは、視覚的推論や強化学習タスクにおけるモデル性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-02-02T23:54:26Z) - Meta-learning using privileged information for dynamics [66.32254395574994]
Neural ODE Processモデルを拡張して、Learning Using Privileged Information設定内の追加情報を使用します。
シミュレーション動的タスクの精度とキャリブレーションを向上した実験により拡張性を検証する。
論文 参考訳(メタデータ) (2021-04-29T12:18:02Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
変分オートエンコーダ(VAE)は、エンドツーエンドの表現学習において必須のツールである。
VAEは強い自己回帰デコーダで潜伏変数を無視する傾向がある。
よりコンパクトな潜在空間において暗黙的な潜在特徴マッチングを強制する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2020-04-22T14:41:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。