論文の概要: Structural Embedding Projection for Contextual Large Language Model Inference
- arxiv url: http://arxiv.org/abs/2501.18826v1
- Date: Fri, 31 Jan 2025 00:46:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:02:19.539139
- Title: Structural Embedding Projection for Contextual Large Language Model Inference
- Title(参考訳): 文脈的大言語モデル推論のための構造埋め込みプロジェクション
- Authors: Vincent Enoasmo, Cedric Featherstonehaugh, Xavier Konstantinopoulos, Zacharias Huntington,
- Abstract要約: 構造化埋め込み変換は、言語モデル推論の効率性と一貫性を高めるための有望なアプローチを提供する。
構造埋め込み射影 (Structure Embedding Projection, SEP) の数学的定式化により、埋め込み空間は構造化された文脈関係を捉えることができる。
語彙の多様性に対するSEPの影響は、埋め込み修飾がモデルの語彙使用に影響を与えることを示唆している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Structured embedding transformations offer a promising approach for enhancing the efficiency and coherence of language model inference. The introduction of Structural Embedding Projection (SEP) provides a mechanism for refining token representations through projection matrices that integrate hierarchical and relational dependencies. The mathematical formulation of SEP enables embedding spaces to capture structured contextual relationships, thereby improving semantic fidelity without significantly increasing computational overhead. Experimental evaluations conducted on a range of linguistic datasets revealed that SEP contributed to reductions in perplexity and enhanced contextual coherence, demonstrating its potential to refine language model outputs. Computational efficiency assessments highlighted variations across different datasets, suggesting that the integration of structured embeddings introduced dataset-dependent trade-offs between inference speed and representational richness. The qualitative analysis of generated responses indicated that SEP enhanced narrative consistency and topic alignment, leading to improved fluency in multi-sentence text generation. The modifications to embedding layers required precise optimization to ensure stable training dynamics, as the introduction of structured transformations altered the traditional representation-learning process. The architectural adjustments necessary for SEP implementation influenced inference latency and memory consumption, requiring a balance between efficiency gains and additional processing demands. The impact of SEP on lexical diversity suggested that embedding modifications influenced the model's vocabulary usage, reflecting a more context-aware selection of generated tokens.
- Abstract(参考訳): 構造化埋め込み変換は、言語モデル推論の効率性と一貫性を高めるための有望なアプローチを提供する。
構造埋め込み投影(Structure Embedding Projection, SEP)の導入は、階層的およびリレーショナルな依存関係を統合するプロジェクション行列を通じてトークン表現を精製するメカニズムを提供する。
SEPの数学的定式化により、埋め込み空間は構造化された文脈関係をキャプチャし、計算オーバーヘッドを大幅に増大させることなく意味的忠実性を向上させることができる。
言語データセットを用いて行った実験結果から,SEPは難易度低減と文脈コヒーレンスの向上に寄与し,言語モデル出力を洗練させる可能性を示した。
計算効率の評価では、さまざまなデータセットのバリエーションを強調し、構造化埋め込みの統合によって、推論速度と表現豊かさの間のデータセット依存のトレードオフが導入されたことを示唆している。
生成した応答の質的分析により、SEPは物語の一貫性とトピックアライメントを高め、多文テキスト生成における流速の向上につながった。
構造的変換の導入によって従来の表現学習プロセスが変更されたため、埋め込みレイヤの変更は、安定したトレーニングダイナミクスを確保するために正確な最適化を必要とした。
SEPの実装に必要なアーキテクチャ調整は、推論遅延とメモリ消費に影響し、効率向上と追加の処理要求のバランスを必要とする。
語彙の多様性に対するSEPの影響は、埋め込み修飾がモデルの語彙使用に影響を与えることを示唆し、生成されたトークンのより文脈に応じた選択を反映している。
関連論文リスト
- Exploring Contextual Flux in Large Language Models: A Novel Approach to Self-Modulating Semantic Networks [0.0]
自己変調機構は言語モデル内で動的適応機能を導入する。
コンテキスト適応戦略は、拡張シーケンスにわたるトークン埋め込み軌跡に影響を与える。
自己規制は、生成の柔軟性を維持しながら、テキスト生成の一貫性を高める。
適応的な埋め込み更新はコヒーレンスの特定の側面を改善するが、その影響はモデルのキャパシティと入力の複雑さに及ばない。
論文 参考訳(メタデータ) (2025-02-16T01:08:19Z) - Structured Convergence in Large Language Model Representations via Hierarchical Latent Space Folding [0.0]
高次元潜在空間におけるトークン表現は、しばしば冗長性を示し、計算効率を制限し、モデル層全体の構造的コヒーレンスを低減する。
本稿では,学習した埋め込みにおいて,マルチスケールの組織を強制する構造的変換機構を提案する。
経験的評価は、層間の表現分散の減少を示し、より安定したパープレキシティ分布に寄与し、テキスト生成における予測信頼性を高める。
論文 参考訳(メタデータ) (2025-02-13T04:01:54Z) - Contextual Gradient Flow Modeling for Large Language Model Generalization in Multi-Scale Feature Spaces [0.0]
マルチスケールの文脈調整を取り入れた構造的勾配改善フレームワークが導入された。
重み更新の階層的な調整は、従来のバックプロパゲーションの代替となった。
構造最適化戦略は不均一なテキスト分布の適応性を保ちながらオーバーフィッティングを緩和する。
論文 参考訳(メタデータ) (2025-02-06T22:57:40Z) - Hierarchical Contextual Manifold Alignment for Structuring Latent Representations in Large Language Models [7.798982346197703]
潜在トークン表現の組織化は、言語モデルの安定性、一般化、文脈整合性を決定する上で重要な役割を果たす。
コアモデル重みを変化させることなくトークン埋め込みに階層的アライメント手法を導入した。
実験により, 希少なトークン検索, 逆方向, 長距離依存性追跡の改善が示された。
論文 参考訳(メタデータ) (2025-02-06T04:01:27Z) - Neural Contextual Reinforcement Framework for Logical Structure Language Generation [1.08272575635683]
このフレームワークはカスタム報酬関数と動的コンテキストアライメント機構を統合している。
論理構造やセマンティックフローに対する人間の期待と密接に一致した出力を生成する。
さまざまなモデルサイズにわたるノイズの多い入力データとスケーラビリティを扱う上で、堅牢性を示す。
論文 参考訳(メタデータ) (2025-01-20T11:34:28Z) - Structural Entropy Guided Probabilistic Coding [52.01765333755793]
構造エントロピー誘導型確率的符号化モデルSEPCを提案する。
我々は、構造エントロピー正規化損失を提案することにより、潜在変数間の関係を最適化に組み込む。
分類タスクと回帰タスクの両方を含む12の自然言語理解タスクに対する実験結果は、SEPCの優れた性能を示す。
論文 参考訳(メタデータ) (2024-12-12T00:37:53Z) - Strengthening Structural Inductive Biases by Pre-training to Perform Syntactic Transformations [75.14793516745374]
中間学習によりトランスフォーマーの構造的帰納バイアスを強化することを提案する。
実験の結果,チャンキングなどの構文的タスクのわずかな学習に有効であることが確認された。
分析の結果,中間的事前学習は,どのトークンにシナティクス変換を適用する必要があるかを追尾する注意を喚起することが明らかとなった。
論文 参考訳(メタデータ) (2024-07-05T14:29:44Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
大規模言語モデル(LLM)は、対話的な意思決定タスクにおいてインテリジェントなエージェントとして期待されている。
本稿では,トークンレベルでのLLMの最適化に適したエントロピー拡張RL法である,エントロピー正規化トークンレベル最適化(ETPO)を導入する。
我々は,データサイエンスコード生成を多段階対話型タスクのシリーズとしてモデル化したシミュレーション環境におけるETPOの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-09T07:45:26Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
自動データ拡張のための自己模倣学習フェーズを組み込むことにより,標準最大確率推定(MLE)パラダイムを改善することを提案する。
既存の文レベルの拡張戦略とは異なり,本手法はより汎用的で,任意のMLEベースの訓練手順に容易に適応できる。
論文 参考訳(メタデータ) (2021-01-02T01:15:57Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。