Neural Networks Remember More: The Power of Parameter Isolation and Combination
- URL: http://arxiv.org/abs/2502.10966v1
- Date: Sun, 16 Feb 2025 02:58:57 GMT
- Title: Neural Networks Remember More: The Power of Parameter Isolation and Combination
- Authors: Biqing Zeng, Zehan Li, Aladdin Ayesh,
- Abstract summary: Catastrophic forgetting is a pervasive issue for pre-trained language models.
Key to solving this problem is to find a trade-off between the plasticity and stability of the model.
We propose a novel method to achieve a balance between model stability and plasticity.
- Score: 3.2430260063115233
- License:
- Abstract: Catastrophic forgetting is a pervasive issue for pre-trained language models (PLMs) during continual learning, where models lose previously acquired knowledge when sequentially trained on a series of tasks. The model's ability to retain old tasks is referred to as stability, while its adaptability to new tasks is called plasticity. Therefore, the key to solving this problem is to find a trade-off between the plasticity and stability of the model. To address this issue, in this paper, we propose a novel method to achieve a balance between model stability and plasticity, thereby mitigating catastrophic forgetting. More specifically, our proposed approach leverages parameter isolation and a subsequent combination strategy. Initially, in the training stage, the model adapts to each downstream task via a parameter isolation method to prevent potential interference among different tasks. We then combine all trained parameters, which contain acquired knowledge, using the task arithmetic method and finally apply them to the backbone model. Empirical evaluations on continual language learning benchmarks substantiate the effectiveness of our approach, revealing a marked enhancement over existing state-of-the-art approaches.
Related papers
- Robust Disentangled Counterfactual Learning for Physical Audiovisual Commonsense Reasoning [24.671771440617288]
We propose a new Robust Disentangled Counterfactual Learning (RDCL) approach for physical audiovisual commonsense reasoning.
The main challenge is how to imitate the reasoning ability of humans, even under the scenario of missing modalities.
Our proposed method is a plug-and-play module that can be incorporated into any baseline including VLMs.
arXiv Detail & Related papers (2025-02-18T01:49:45Z) - Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
Deep model merging represents an emerging research direction that combines multiple fine-tuned models to harness their capabilities across different tasks and domains.
Current model merging techniques focus on merging all available models simultaneously, with weight matrices-based methods being the predominant approaches.
We propose a training-free projection-based continual merging method that processes models sequentially.
arXiv Detail & Related papers (2025-01-16T13:17:24Z) - Temporal-Difference Variational Continual Learning [89.32940051152782]
A crucial capability of Machine Learning models in real-world applications is the ability to continuously learn new tasks.
In Continual Learning settings, models often struggle to balance learning new tasks with retaining previous knowledge.
We propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations.
arXiv Detail & Related papers (2024-10-10T10:58:41Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning [12.004172212239848]
Continual learning requires the model to learn multiple tasks sequentially.
In this work, we propose a new PEFT method, called interference-free low-rank adaptation (InfLoRA) for continual learning.
arXiv Detail & Related papers (2024-03-30T03:16:37Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - SRIL: Selective Regularization for Class-Incremental Learning [5.810252620242912]
Class-Incremental Learning aims to create an integrated model that balances plasticity and stability to overcome this challenge.
We propose a selective regularization method that accepts new knowledge while maintaining previous knowledge.
We validate the effectiveness of the proposed method through extensive experimental protocols using CIFAR-100, ImageNet-Subset, and ImageNet-Full.
arXiv Detail & Related papers (2023-05-09T05:04:35Z) - On the Stability-Plasticity Dilemma of Class-Incremental Learning [50.863180812727244]
A primary goal of class-incremental learning is to strike a balance between stability and plasticity.
This paper aims to shed light on how effectively recent class-incremental learning algorithms address the stability-plasticity trade-off.
arXiv Detail & Related papers (2023-04-04T09:34:14Z) - Online Continual Learning via the Meta-learning Update with Multi-scale
Knowledge Distillation and Data Augmentation [4.109784267309124]
Continual learning aims to rapidly and continually learn the current task from a sequence of tasks.
One common limitation of this method is the data imbalance between the previous and current tasks.
We propose a novel framework called Meta-learning update via Multi-scale Knowledge Distillation and Data Augmentation.
arXiv Detail & Related papers (2022-09-12T10:03:53Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.