GS-GVINS: A Tightly-integrated GNSS-Visual-Inertial Navigation System Augmented by 3D Gaussian Splatting
- URL: http://arxiv.org/abs/2502.10975v1
- Date: Sun, 16 Feb 2025 03:29:32 GMT
- Title: GS-GVINS: A Tightly-integrated GNSS-Visual-Inertial Navigation System Augmented by 3D Gaussian Splatting
- Authors: Zelin Zhou, Saurav Uprety, Shichuang Nie, Hongzhou Yang,
- Abstract summary: 3D Splatting (3DGS) has drawn significant attention in the area of 3D map reconstruction and visual SLAM.<n>We propose GS-GVINS: a tightly-integrated pruning-Visual-Inertial Navigation System augmented by 3DGS.<n>This system leverages 3D Gaussian as a continuous differentiable representation in largescale outdoor environments, enhancing navigation performance through the constructed 3D Gaussian map.
- Score: 1.118708572189902
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, the emergence of 3D Gaussian Splatting (3DGS) has drawn significant attention in the area of 3D map reconstruction and visual SLAM. While extensive research has explored 3DGS for indoor trajectory tracking using visual sensor alone or in combination with Light Detection and Ranging (LiDAR) and Inertial Measurement Unit (IMU), its integration with GNSS for large-scale outdoor navigation remains underexplored. To address these concerns, we proposed GS-GVINS: a tightly-integrated GNSS-Visual-Inertial Navigation System augmented by 3DGS. This system leverages 3D Gaussian as a continuous differentiable scene representation in largescale outdoor environments, enhancing navigation performance through the constructed 3D Gaussian map. Notably, GS-GVINS is the first GNSS-Visual-Inertial navigation application that directly utilizes the analytical jacobians of SE3 camera pose with respect to 3D Gaussians. To maintain the quality of 3DGS rendering in extreme dynamic states, we introduce a motionaware 3D Gaussian pruning mechanism, updating the map based on relative pose translation and the accumulated opacity along the camera ray. For validation, we test our system under different driving environments: open-sky, sub-urban, and urban. Both self-collected and public datasets are used for evaluation. The results demonstrate the effectiveness of GS-GVINS in enhancing navigation accuracy across diverse driving environments.
Related papers
- Outdoor Monocular SLAM with Global Scale-Consistent 3D Gaussian Pointmaps [13.325879149065008]
3D Gaussian Splatting (3DGS) has become a popular solution in SLAM due to its high-fidelity synthesis and real-time novel view performance.<n>Previous 3DGS SLAM methods employ a differentiable rendering pipeline for tracking, lack geometric priors in outdoor scenes.<n>We propose a robust RGB-only outdoor 3DGS SLAM method: S3PO-GS. Technically, we establish a self-consistent tracking module anchored in the 3DGS pointmap, which avoids cumulative scale drift and achieves more precise and robust tracking with fewer iterations.
arXiv Detail & Related papers (2025-07-04T17:56:43Z) - EVolSplat: Efficient Volume-based Gaussian Splatting for Urban View Synthesis [61.1662426227688]
Existing NeRF and 3DGS-based methods show promising results in achieving photorealistic renderings but require slow, per-scene optimization.
We introduce EVolSplat, an efficient 3D Gaussian Splatting model for urban scenes that works in a feed-forward manner.
arXiv Detail & Related papers (2025-03-26T02:47:27Z) - GS-LIVO: Real-Time LiDAR, Inertial, and Visual Multi-sensor Fused Odometry with Gaussian Mapping [22.432252084121274]
LiDAR-Inertial-Visual (LIV) sensor configuration has demonstrated superior performance in localization and dense mapping.<n>We propose a novel real-time Gaussian-based simultaneous localization and mapping (SLAM) system.<n>The framework achieves real-time performance while maintaining robust multi-sensor fusion capabilities.
arXiv Detail & Related papers (2025-01-15T09:04:56Z) - Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels [51.08794269211701]
We introduce 3D Linear Splatting (3DLS), which replaces Gaussian kernels with linear kernels to achieve sharper and more precise results.<n>3DLS demonstrates state-of-the-art fidelity and accuracy, along with a 30% FPS improvement over baseline 3DGS.
arXiv Detail & Related papers (2024-11-19T11:59:54Z) - GeoSplatting: Towards Geometry Guided Gaussian Splatting for Physically-based Inverse Rendering [69.67264955234494]
GeoSplatting is a novel approach that augments 3DGS with explicit geometry guidance for precise light transport modeling.<n>By differentiably constructing a surface-grounded 3DGS from an optimizable mesh, our approach leverages well-defined mesh normals and the opaque mesh surface.<n>This enhancement ensures precise material decomposition while preserving the efficiency and high-quality rendering capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-31T17:57:07Z) - LiDAR-GS:Real-time LiDAR Re-Simulation using Gaussian Splatting [50.808933338389686]
We present LiDAR-GS, a real-time, high-fidelity re-simulation of LiDAR scans in public urban road scenes.
The method achieves state-of-the-art results in both rendering frame rate and quality on publically available large scene datasets.
arXiv Detail & Related papers (2024-10-07T15:07:56Z) - GS-Net: Generalizable Plug-and-Play 3D Gaussian Splatting Module [19.97023389064118]
We propose GS-Net, a plug-and-play 3DGS module that densifies Gaussian ellipsoids from sparse SfM point clouds.
Experiments demonstrate that applying GS-Net to 3DGS yields a PSNR improvement of 2.08 dB for conventional viewpoints and 1.86 dB for novel viewpoints.
arXiv Detail & Related papers (2024-09-17T16:03:19Z) - Towards Real-Time Gaussian Splatting: Accelerating 3DGS through Photometric SLAM [4.08109886949724]
We propose integrating 3DGS with Direct Sparse Odometry, a monocular photometric SLAM system.
Preliminary experiments show that using Direct Sparse Odometry point cloud outputs, as opposed to standard structure-from-motion methods, significantly shortens the training time needed to achieve high-quality renders.
arXiv Detail & Related papers (2024-08-07T15:01:08Z) - IG-SLAM: Instant Gaussian SLAM [6.228980850646457]
3D Gaussian Splatting has recently shown promising results as an alternative scene representation in SLAM systems.
We present IG-SLAM, a dense RGB-only SLAM system that employs robust Dense-SLAM methods for tracking and combines them with Gaussian Splatting.
We demonstrate competitive performance with state-of-the-art RGB-only SLAM systems while achieving faster operation speeds.
arXiv Detail & Related papers (2024-08-02T09:07:31Z) - MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements [59.70107451308687]
We show for the first time that using 3D Gaussians for map representation with unposed camera images and inertial measurements can enable accurate SLAM.
Our method, MM3DGS, addresses the limitations of prior rendering by enabling faster scale awareness, and improved trajectory tracking.
We also release a multi-modal dataset, UT-MM, collected from a mobile robot equipped with a camera and an inertial measurement unit.
arXiv Detail & Related papers (2024-04-01T04:57:41Z) - 3DGSR: Implicit Surface Reconstruction with 3D Gaussian Splatting [58.95801720309658]
In this paper, we present an implicit surface reconstruction method with 3D Gaussian Splatting (3DGS), namely 3DGSR.
The key insight is incorporating an implicit signed distance field (SDF) within 3D Gaussians to enable them to be aligned and jointly optimized.
Our experimental results demonstrate that our 3DGSR method enables high-quality 3D surface reconstruction while preserving the efficiency and rendering quality of 3DGS.
arXiv Detail & Related papers (2024-03-30T16:35:38Z) - A Survey on 3D Gaussian Splatting [51.96747208581275]
3D Gaussian splatting (GS) has emerged as a transformative technique in the realm of explicit radiance field and computer graphics.
We provide the first systematic overview of the recent developments and critical contributions in the domain of 3D GS.
By enabling unprecedented rendering speed, 3D GS opens up a plethora of applications, ranging from virtual reality to interactive media and beyond.
arXiv Detail & Related papers (2024-01-08T13:42:59Z) - Gaussian Splatting SLAM [16.3858380078553]
We present the first application of 3D Gaussian Splatting in monocular SLAM.
Our method runs live at 3fps, unifying the required representation for accurate tracking, mapping, and high-quality rendering.
Several innovations are required to continuously reconstruct 3D scenes with high fidelity from a live camera.
arXiv Detail & Related papers (2023-12-11T18:19:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.