FeaKM: Robust Collaborative Perception under Noisy Pose Conditions
- URL: http://arxiv.org/abs/2502.11003v1
- Date: Sun, 16 Feb 2025 06:03:33 GMT
- Title: FeaKM: Robust Collaborative Perception under Noisy Pose Conditions
- Authors: Jiuwu Hao, Liguo Sun, Ti Xiang, Yuting Wan, Haolin Song, Pin Lv,
- Abstract summary: We introduce FeaKM, a novel method that employs Feature-level Keypoints Matching to correct pose discrepancies among collaborating agents.
Our experimental results demonstrate that FeaKM significantly outperforms existing methods on the DAIR-V2X dataset.
- Score: 1.9626657740463982
- License:
- Abstract: Collaborative perception is essential for networks of agents with limited sensing capabilities, enabling them to work together by exchanging information to achieve a robust and comprehensive understanding of their environment. However, localization inaccuracies often lead to significant spatial message displacement, which undermines the effectiveness of these collaborative efforts. To tackle this challenge, we introduce FeaKM, a novel method that employs Feature-level Keypoints Matching to effectively correct pose discrepancies among collaborating agents. Our approach begins by utilizing a confidence map to identify and extract salient points from intermediate feature representations, allowing for the computation of their descriptors. This step ensures that the system can focus on the most relevant information, enhancing the matching process. We then implement a target-matching strategy that generates an assignment matrix, correlating the keypoints identified by different agents. This is critical for establishing accurate correspondences, which are essential for effective collaboration. Finally, we employ a fine-grained transformation matrix to synchronize the features of all agents and ascertain their relative statuses, ensuring coherent communication among them. Our experimental results demonstrate that FeaKM significantly outperforms existing methods on the DAIR-V2X dataset, confirming its robustness even under severe noise conditions. The code and implementation details are available at https://github.com/uestchjw/FeaKM.
Related papers
- mmCooper: A Multi-agent Multi-stage Communication-efficient and Collaboration-robust Cooperative Perception Framework [12.896563384343889]
mmCooper is a novel multi-agent, multi-stage, communication-efficient, and collaboration-robust cooperative perception framework.
We validate the effectiveness of mmCooper through extensive experiments on real-world and simulated datasets.
arXiv Detail & Related papers (2025-01-21T16:34:16Z) - RoCo:Robust Collaborative Perception By Iterative Object Matching and Pose Adjustment [9.817492112784674]
Collaborative autonomous driving with multiple vehicles usually requires the data fusion from multiple modalities.
In collaborative perception, the quality of object detection based on a modality is highly sensitive to the relative pose errors among the agents.
We propose RoCo, a novel unsupervised framework to conduct iterative object matching and agent pose adjustment.
arXiv Detail & Related papers (2024-08-01T03:29:33Z) - Object Segmentation by Mining Cross-Modal Semantics [68.88086621181628]
We propose a novel approach by mining the Cross-Modal Semantics to guide the fusion and decoding of multimodal features.
Specifically, we propose a novel network, termed XMSNet, consisting of (1) all-round attentive fusion (AF), (2) coarse-to-fine decoder (CFD), and (3) cross-layer self-supervision.
arXiv Detail & Related papers (2023-05-17T14:30:11Z) - Attention Based Feature Fusion For Multi-Agent Collaborative Perception [4.120288148198388]
We propose an intermediate collaborative perception solution in the form of a graph attention network (GAT)
The proposed approach develops an attention-based aggregation strategy to fuse intermediate representations exchanged among multiple connected agents.
This approach adaptively highlights important regions in the intermediate feature maps at both the channel and spatial levels, resulting in improved object detection precision.
arXiv Detail & Related papers (2023-05-03T12:06:11Z) - ECO-TR: Efficient Correspondences Finding Via Coarse-to-Fine Refinement [80.94378602238432]
We propose an efficient structure named Correspondence Efficient Transformer (ECO-TR) by finding correspondences in a coarse-to-fine manner.
To achieve this, multiple transformer blocks are stage-wisely connected to gradually refine the predicted coordinates.
Experiments on various sparse and dense matching tasks demonstrate the superiority of our method in both efficiency and effectiveness against existing state-of-the-arts.
arXiv Detail & Related papers (2022-09-25T13:05:33Z) - Distributed Adaptive Learning Under Communication Constraints [54.22472738551687]
This work examines adaptive distributed learning strategies designed to operate under communication constraints.
We consider a network of agents that must solve an online optimization problem from continual observation of streaming data.
arXiv Detail & Related papers (2021-12-03T19:23:48Z) - Cross-modal Consensus Network for Weakly Supervised Temporal Action
Localization [74.34699679568818]
Weakly supervised temporal action localization (WS-TAL) is a challenging task that aims to localize action instances in the given video with video-level categorical supervision.
We propose a cross-modal consensus network (CO2-Net) to tackle this problem.
arXiv Detail & Related papers (2021-07-27T04:21:01Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
We propose a cooperative multi-agent meta-learning algorithm, referred to as MAML or Dif-MAML.
We show that the proposed strategy allows a collection of agents to attain agreement at a linear rate and to converge to a stationary point of the aggregate MAML.
Simulation results illustrate the theoretical findings and the superior performance relative to the traditional non-cooperative setting.
arXiv Detail & Related papers (2020-10-06T16:51:09Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
arXiv Detail & Related papers (2020-03-28T05:47:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.