Deep Incomplete Multi-view Learning via Cyclic Permutation of VAEs
- URL: http://arxiv.org/abs/2502.11037v1
- Date: Sun, 16 Feb 2025 08:36:43 GMT
- Title: Deep Incomplete Multi-view Learning via Cyclic Permutation of VAEs
- Authors: Xin Gao, Jian Pu,
- Abstract summary: We propose Multi-View Permutation of Variational Auto-Encoders (MVP), which excavates invariant relationships between views in incomplete data.
MVP establishes inter-view correspondences in the latent space of Variational Auto-Encoders, enabling the inference of missing views.
We demonstrate the effectiveness of our approach on seven diverse datasets with varying missing ratios.
- Score: 17.28020972971443
- License:
- Abstract: Multi-View Representation Learning (MVRL) aims to derive a unified representation from multi-view data by leveraging shared and complementary information across views. However, when views are irregularly missing, the incomplete data can lead to representations that lack sufficiency and consistency. To address this, we propose Multi-View Permutation of Variational Auto-Encoders (MVP), which excavates invariant relationships between views in incomplete data. MVP establishes inter-view correspondences in the latent space of Variational Auto-Encoders, enabling the inference of missing views and the aggregation of more sufficient information. To derive a valid Evidence Lower Bound (ELBO) for learning, we apply permutations to randomly reorder variables for cross-view generation and then partition them by views to maintain invariant meanings under permutations. Additionally, we enhance consistency by introducing an informational prior with cyclic permutations of posteriors, which turns the regularization term into a similarity measure across distributions. We demonstrate the effectiveness of our approach on seven diverse datasets with varying missing ratios, achieving superior performance in multi-view clustering and generation tasks.
Related papers
- Self Supervised Correlation-based Permutations for Multi-View Clustering [7.972599673048582]
We propose an end-to-end deep learning-based MVC framework for general data.
Our approach involves learning meaningful fused data representations with a novel permutation-based canonical correlation objective.
We demonstrate the effectiveness of our model using ten MVC benchmark datasets.
arXiv Detail & Related papers (2024-02-26T08:08:30Z) - One for all: A novel Dual-space Co-training baseline for Large-scale
Multi-View Clustering [42.92751228313385]
We propose a novel multi-view clustering model, named Dual-space Co-training Large-scale Multi-view Clustering (DSCMC)
The main objective of our approach is to enhance the clustering performance by leveraging co-training in two distinct spaces.
Our algorithm has an approximate linear computational complexity, which guarantees its successful application on large-scale datasets.
arXiv Detail & Related papers (2024-01-28T16:30:13Z) - Scalable Incomplete Multi-View Clustering with Structure Alignment [71.62781659121092]
In this paper, we propose a novel incomplete anchor graph learning framework.
We construct the view-specific anchor graph to capture the complementary information from different views.
The time and space complexity of the proposed SIMVC-SA is proven to be linearly correlated with the number of samples.
arXiv Detail & Related papers (2023-08-31T08:30:26Z) - Deep Incomplete Multi-view Clustering with Cross-view Partial Sample and
Prototype Alignment [50.82982601256481]
We propose a Cross-view Partial Sample and Prototype Alignment Network (CPSPAN) for Deep Incomplete Multi-view Clustering.
Unlike existing contrastive-based methods, we adopt pair-observed data alignment as 'proxy supervised signals' to guide instance-to-instance correspondence construction.
arXiv Detail & Related papers (2023-03-28T02:31:57Z) - Incomplete Multi-view Clustering via Cross-view Relation Transfer [41.17336912278538]
We propose a novel incomplete multi-view clustering framework, which incorporates cross-view relation transfer and multi-view fusion learning.
Experiments conducted on several real datasets demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2021-12-01T14:28:15Z) - Multi-VAE: Learning Disentangled View-common and View-peculiar Visual
Representations for Multi-view Clustering [20.412896884905496]
We present a novel VAE-based multi-view clustering framework (Multi-VAE)
We define a view-common variable and multiple view-peculiar variables in the generative model.
By controlling the mutual information capacity to disentangle the view-common and view-peculiar representations, continuous visual information of multiple views can be separated.
arXiv Detail & Related papers (2021-06-21T16:23:28Z) - V3H: View Variation and View Heredity for Incomplete Multi-view
Clustering [65.29597317608844]
Incomplete multi-view clustering is an effective method to integrate these incomplete views.
We propose a novel View Variation and View Heredity approach (V3H) to overcome this limitation.
V3H presents possibly the first work to introduce genetics to clustering algorithms for learning simultaneously the consistent information and the unique information from incomplete multi-view data.
arXiv Detail & Related papers (2020-11-23T03:24:48Z) - Deep Partial Multi-View Learning [94.39367390062831]
We propose a novel framework termed Cross Partial Multi-View Networks (CPM-Nets)
We fifirst provide a formal defifinition of completeness and versatility for multi-view representation.
We then theoretically prove the versatility of the learned latent representations.
arXiv Detail & Related papers (2020-11-12T02:29:29Z) - Generative Partial Multi-View Clustering [133.36721417531734]
We propose a generative partial multi-view clustering model, named as GP-MVC, to address the incomplete multi-view problem.
First, multi-view encoder networks are trained to learn common low-dimensional representations, followed by a clustering layer to capture the consistent cluster structure across multiple views.
Second, view-specific generative adversarial networks are developed to generate the missing data of one view conditioning on the shared representation given by other views.
arXiv Detail & Related papers (2020-03-29T17:48:27Z) - Variational Inference for Deep Probabilistic Canonical Correlation
Analysis [49.36636239154184]
We propose a deep probabilistic multi-view model that is composed of a linear multi-view layer and deep generative networks as observation models.
An efficient variational inference procedure is developed that approximates the posterior distributions of the latent probabilistic multi-view layer.
A generalization to models with arbitrary number of views is also proposed.
arXiv Detail & Related papers (2020-03-09T17:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.