Imaging current flow and injection in scalable graphene devices through NV-magnetometry
- URL: http://arxiv.org/abs/2502.11076v1
- Date: Sun, 16 Feb 2025 10:52:48 GMT
- Title: Imaging current flow and injection in scalable graphene devices through NV-magnetometry
- Authors: Kaj Dockx, Michele Buscema, Saravana Kumar, Tijmen van Ree, Abbas Mohtashami, Leon van Dooren, Gabriele Bulgarini, Richard van Rijn, Clara I. Osorio, Toeno van der Sar,
- Abstract summary: We use high-resolution nitrogen-vacancy (NV) magnetometry to visualise the charge flow in gold-contacted, single-layer graphene devices.
Our findings establish high-resolution NV-magnetometry as a key tool for characterizing scalable 2D material based devices.
- Score: 0.0
- License:
- Abstract: The global electronic properties of solid-state devices are strongly affected by the microscopic spatial paths of charge carriers. Visualising these paths in novel devices produced by scalable processes would provide a quality assessment method that can propel the device performance metrics towards commercial use. Here, we use high-resolution nitrogen-vacancy (NV) magnetometry to visualise the charge flow in gold-contacted, single-layer graphene devices produced by scalable methods. Modulating the majority carrier type via field effect reveals a strong asymmetry between the spatial current distributions in the electron and hole regimes that we attribute to an inhomogeneous microscopic potential landscape, inaccessible to conventional measurement techniques. In addition, we observe large, unexpected, differences in charge flow through nominally identical gold-graphene contacts. Moreover, we find that the current transfer into the graphene occurs several microns before the metal contact edge. Our findings establish high-resolution NV-magnetometry as a key tool for characterizing scalable 2D material based devices, uncovering quality deficits of the material, substrate, and electrical contacts that are invisible to conventional methods.
Related papers
- Electron-Electron Interactions in Device Simulation via Non-equilibrium Green's Functions and the GW Approximation [71.63026504030766]
electron-electron (e-e) interactions must be explicitly incorporated in quantum transport simulation.
This study is the first one reporting large-scale atomistic quantum transport simulations of nano-devices under non-equilibrium conditions.
arXiv Detail & Related papers (2024-12-17T15:05:33Z) - Imaging ferroelectric domains with a single-spin scanning quantum sensor [0.0]
Here, we use a scanning nitrogen-vacancy (NV) microscope to image domain patterns in piezoelectric and improper ferroelectric materials.
The ability to measure both stray electric and magnetic fields under ambient conditions opens exciting opportunities for the study of multiferroic and multifunctional materials and devices.
arXiv Detail & Related papers (2022-12-15T15:41:53Z) - Current Paths in an Atomic Precision Advanced Manufactured Device Imaged
by Nitrogen-Vacancy Diamond Magnetic Microscopy [0.0]
Nitrogen-vacancy (NV) wide-field magnetic imaging of stray magnetic fields from surface current densities flowing in an APAM test device over a mm-field of view with mum-resolution.
Analysis on the current density reconstructed map showed a projected sensitivity of 0.03 A/m, corresponding to a smallest detectable current in the 200 mum-wide APAM ribbon of 6 muA.
These results demonstrate the failure analysis capability of NV wide-field magnetometry for APAM materials, opening the possibility to investigate other cutting-edge microelectronic devices.
arXiv Detail & Related papers (2022-07-28T17:38:51Z) - Electromagnetically induced transparency in inhomogeneously broadened
divacancy defect ensembles in SiC [52.74159341260462]
Electromagnetically induced transparency (EIT) is a phenomenon that can provide strong and robust interfacing between optical signals and quantum coherence of electronic spins.
We show that EIT can be established with high visibility also in this material platform upon careful design of the measurement geometry.
Our work provides an understanding of EIT in multi-level systems with significant inhomogeneities, and our considerations are valid for a wide array of defects in semiconductors.
arXiv Detail & Related papers (2022-03-18T11:22:09Z) - Scanning gradiometry with a single spin quantum magnetometer [0.0]
We show that gradiometry provides important advantages over static field imaging.
We demonstrate the capabilities of gradiometry by imaging the nanotesla fields appearing above topographic defects and atomic steps in an antiferromagnet, direct currents in a graphene device, and para- and diamagnetic metals.
arXiv Detail & Related papers (2022-02-18T11:21:31Z) - Imaging of sub-$\mu$A currents in bilayer graphene using a scanning
diamond magnetometer [0.0]
We report on sensitive magnetic imaging of two-dimensional current distributions in bilayer graphene at room temperature.
Current density maps reveal local variations in the flow pattern and global tuning of current flow via the back-gate potential.
Our experiments demonstrate the feasibility for imaging subtle features of nanoscale transport in two-dimensional materials and conductors.
arXiv Detail & Related papers (2022-01-18T12:53:46Z) - TOF-SIMS Analysis of Decoherence Sources in Nb Superconducting
Resonators [48.7576911714538]
Superconducting qubits have emerged as a potentially foundational platform technology.
Material quality and interfacial structures continue to curb device performance.
Two-level system defects in the thin film and adjacent regions introduce noise and dissipate electromagnetic energy.
arXiv Detail & Related papers (2021-08-30T22:22:47Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Technical Review: Imaging weak magnetic field patterns on the
nanometer-scale and its application to 2D materials [0.0]
We review the state-of-the-art techniques most amenable to the investigation of such systems.
We compare the capabilities of these techniques, their required operating conditions, and assess their suitability to different types of source contrast.
arXiv Detail & Related papers (2021-03-18T17:11:39Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z) - Microscopic Relaxation Channels in Materials for Superconducting Qubits [76.84500123816078]
We show correlations between $T_$ and grain size, enhanced oxygen diffusion along grain boundaries, and concentration of suboxides near the surface.
Physical mechanisms connect these microscopic properties to residual surface resistance and $T_$ through losses arising from the grain boundaries and from defects in the suboxides.
This comprehensive approach to understanding qubit decoherence charts a pathway for materials-driven improvements of superconducting qubit performance.
arXiv Detail & Related papers (2020-04-06T18:01:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.