論文の概要: Transferable Ensemble Black-box Jailbreak Attacks on Large Language Models
- arxiv url: http://arxiv.org/abs/2410.23558v2
- Date: Wed, 27 Nov 2024 11:28:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:24:04.843338
- Title: Transferable Ensemble Black-box Jailbreak Attacks on Large Language Models
- Title(参考訳): 大規模言語モデル上での移動可能アンサンブルブラックボックスジェイルブレイク攻撃
- Authors: Yiqi Yang, Hongye Fu,
- Abstract要約: 我々は,様々なLSM-as-Attackerメソッドを組み込んだ新しいブラックボックス・ジェイルブレイク攻撃フレームワークを提案する。
本手法は,既存のジェイルブレイク研究と実践から得られた3つの重要な知見に基づいて設計されている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this report, we propose a novel black-box jailbreak attacking framework that incorporates various LLM-as-Attacker methods to deliver transferable and powerful jailbreak attacks. Our method is designed based on three key observations from existing jailbreaking studies and practices. First, we consider an ensemble approach should be more effective in exposing the vulnerabilities of an aligned LLM compared to individual attacks. Second, different malicious instructions inherently vary in their jailbreaking difficulty, necessitating differentiated treatment to ensure more efficient attacks. Finally, the semantic coherence of a malicious instruction is crucial for triggering the defenses of an aligned LLM; therefore, it must be carefully disrupted to manipulate its embedding representation, thereby increasing the jailbreak success rate. We validated our approach by participating in the Competition for LLM and Agent Safety 2024, where our team achieved top performance in the Jailbreaking Attack Track.
- Abstract(参考訳): 本稿では,トランスファー可能で強力なジェイルブレイク攻撃を実現するために,様々なLSM-as-Attackerメソッドを組み込んだ新しいブラックボックスジェイルブレイク攻撃フレームワークを提案する。
本手法は,既存のジェイルブレイク研究と実践から得られた3つの重要な知見に基づいて設計されている。
まず、アンサンブルアプローチは、個々の攻撃と比較して、協調LDMの脆弱性を明らかにするのに効果的であるべきだと考えている。
第二に、異なる悪意のある指示は本来、脱獄の難しさによって異なり、より効率的な攻撃を確実にするために、区別された治療を必要とする。
最後に、悪意のある命令のセマンティック・コヒーレンス(意味的コヒーレンス)は、協調LDMの防御を誘導するために重要であるため、その埋め込み表現を慎重に操作し、ジェイルブレイクの成功率を高める必要がある。
LLMとエージェントセーフティ2024のコンペティションに参加することで,我々のアプローチを検証した。
関連論文リスト
- Rewrite to Jailbreak: Discover Learnable and Transferable Implicit Harmfulness Instruction [32.04296423547049]
大規模言語モデル(LLM)は様々な領域に広く適用されている。
LLMを攻撃するための転送可能なブラックボックスジェイルブレイク法であるRewrite to Jailbreak (R2J)アプローチを提案する。
論文 参考訳(メタデータ) (2025-02-16T11:43:39Z) - xJailbreak: Representation Space Guided Reinforcement Learning for Interpretable LLM Jailbreaking [32.89084809038529]
ブラックボックス・ジェイルブレイク(Black-box jailbreak)は、大規模な言語モデルの安全メカニズムをバイパスする攻撃である。
強化学習(RL)を利用した新しいブラックボックスジェイルブレイク手法を提案する。
我々は,より厳密で総合的なジェイルブレイク成功評価を提供するために,キーワード,意図マッチング,回答バリデーションを取り入れた総合的ジェイルブレイク評価フレームワークを導入する。
論文 参考訳(メタデータ) (2025-01-28T06:07:58Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
私たちは、jailbreak攻撃から防御するために設計された方法であるLayer-AdvPatcherを紹介します。
私たちは、自己拡張データセットを通じて、大規模言語モデル内の特定のレイヤにパッチを適用するために、未学習の戦略を使用します。
我々の枠組みは、脱獄攻撃の有害性と攻撃の成功率を減らす。
論文 参考訳(メタデータ) (2025-01-05T19:06:03Z) - JailPO: A Novel Black-box Jailbreak Framework via Preference Optimization against Aligned LLMs [11.924542310342282]
我々は、LLM(Large Language Models)アライメントを調べるための新しいブラックボックスジェイルブレイクフレームワークであるJailPOを紹介する。
スケーラビリティと普遍性のために、JailPOは攻撃モデルを慎重に訓練し、隠蔽されたジェイルブレイクプロンプトを自動的に生成する。
また、優先最適化に基づく攻撃手法を導入し、ジェイルブレイクの有効性を高める。
論文 参考訳(メタデータ) (2024-12-20T07:29:10Z) - Immune: Improving Safety Against Jailbreaks in Multi-modal LLMs via Inference-Time Alignment [97.38766396447369]
訓練時安全アライメントにもかかわらず、MLLMは脱獄攻撃に弱いままである。
我々は、安全な報酬モデルを利用してジェイルブレイク攻撃を防御する推論時防衛フレームワークImmuneを提案する。
論文 参考訳(メタデータ) (2024-11-27T19:00:10Z) - Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
そこで本稿では, ガーブレッドの逆数プロンプトを, 一貫性のある, 可読性のある自然言語の逆数プロンプトに"翻訳"する手法を提案する。
また、jailbreakプロンプトの効果的な設計を発見し、jailbreak攻撃の理解を深めるための新しいアプローチも提供する。
本稿では,AdvBench上でのLlama-2-Chatモデルに対する攻撃成功率は90%以上である。
論文 参考訳(メタデータ) (2024-10-15T06:31:04Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
大きな言語モデル(LLM)は、安全クリティカルなアプリケーションにますますデプロイされている。
LLMは、悪質なプロンプトを慎重に作り、ポリシーに違反するコンテンツを生成することで、まだジェイルブレイクされる可能性がある。
本稿では,プロンプトレベルのジェイルブレイクを用いて有害な命令を隠蔽し,グラデーションベースの攻撃で攻撃成功率を高め,テンプレートベースのコネクタを介して2種類のジェイルブレイク攻撃を接続する新しいEnJa攻撃を提案する。
論文 参考訳(メタデータ) (2024-08-07T07:46:08Z) - Weak-to-Strong Jailbreaking on Large Language Models [96.50953637783581]
大規模言語モデル(LLM)は、ジェイルブレイク攻撃に対して脆弱である。
既存のジェイルブレイク法は計算コストがかかる。
我々は、弱々しく強固な脱獄攻撃を提案する。
論文 参考訳(メタデータ) (2024-01-30T18:48:37Z) - Jailbreaking Black Box Large Language Models in Twenty Queries [97.29563503097995]
大規模言語モデル(LLM)は、敵のジェイルブレイクに対して脆弱である。
LLMへのブラックボックスアクセスのみのセマンティックジェイルブレイクを生成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-12T15:38:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。