Data Ecofeminism
- URL: http://arxiv.org/abs/2502.11086v1
- Date: Sun, 16 Feb 2025 11:47:50 GMT
- Title: Data Ecofeminism
- Authors: Ana Valdivia,
- Abstract summary: Generative Artificial Intelligence (GenAI) is driving significant environmental impacts.
The paper calls for an urgent reassessment of the GenAI innovation race.
- Score: 0.0
- License:
- Abstract: Generative Artificial Intelligence (GenAI) is driving significant environmental impacts. The rapid development and deployment of increasingly larger algorithmic models capable of analysing vast amounts of data are contributing to rising carbon emissions, water withdrawal, and waste generation. Generative models often consume substantially more energy than traditional models, with major tech firms increasingly turning to nuclear power to sustain these systems -- an approach that could have profound environmental consequences. This paper introduces seven data ecofeminist principles delineating a pathway for developing technological alternatives of eco-societal transformations within the AI research context. Rooted in data feminism and ecofeminist frameworks, which interrogate about the historical and social construction of epistemologies underlying the hegemonic development of science and technology that disrupt communities and nature, these principles emphasise the integration of social and environmental justice within a critical AI agenda. The paper calls for an urgent reassessment of the GenAI innovation race, advocating for ecofeminist algorithmic and infrastructural projects that prioritise and respect life, the people, and the planet.
Related papers
- From Efficiency Gains to Rebound Effects: The Problem of Jevons' Paradox in AI's Polarized Environmental Debate [69.05573887799203]
Much of this debate has concentrated on direct impact without addressing the significant indirect effects.
This paper examines how the problem of Jevons' Paradox applies to AI, whereby efficiency gains may paradoxically spur increased consumption.
We argue that understanding these second-order impacts requires an interdisciplinary approach, combining lifecycle assessments with socio-economic analyses.
arXiv Detail & Related papers (2025-01-27T22:45:06Z) - Mapping the individual, social, and biospheric impacts of Foundation Models [0.39843531413098965]
This paper offers a critical framework to account for the social, political, and environmental dimensions of foundation models and generative AI.
We identify 14 categories of risks and harms and map them according to their individual, social, and biospheric impacts.
arXiv Detail & Related papers (2024-07-24T10:05:40Z) - From the evolution of public data ecosystems to the evolving horizons of the forward-looking intelligent public data ecosystem empowered by emerging technologies [0.0]
Public data ecosystems (PDEs) represent complex socio-technical systems crucial for optimizing data use in the public sector and outside it.
Previous research pro-posed a six-generation Evolutionary Model of Public Data Ecosystems (EMPDE)
This study addresses this gap by validating the theoretical model through a real-life examination in five European countries.
arXiv Detail & Related papers (2024-05-22T12:58:02Z) - Recommendations for public action towards sustainable generative AI
systems [0.0]
This paper presents the components of the environmental footprint of generative AI.
It highlights the massive CO2 emissions and water consumption associated with training large language models.
The paper also explores the factors and characteristics of models that have an influence on their environmental footprint.
arXiv Detail & Related papers (2024-01-04T08:55:53Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Towards Sustainable Artificial Intelligence: An Overview of
Environmental Protection Uses and Issues [0.0]
This paper describes the paradox of an energy-consuming technology serving the ecological challenges of tomorrow.
It draws on numerous examples from AI for Green players to present use cases and concrete examples.
The environmental dimension is part of the broader ethical problem of AI, and addressing it is crucial for ensuring the sustainability of AI in the long term.
arXiv Detail & Related papers (2022-12-22T14:31:48Z) - Eco2AI: carbon emissions tracking of machine learning models as the
first step towards sustainable AI [47.130004596434816]
In eco2AI we put emphasis on accuracy of energy consumption tracking and correct regional CO2 emissions accounting.
The motivation also comes from the concept of AI-based green house gases sequestrating cycle with both Sustainable AI and Green AI pathways.
arXiv Detail & Related papers (2022-07-31T09:34:53Z) - Sustainable AI: Environmental Implications, Challenges and Opportunities [13.089123643565724]
We characterize the carbon footprint of AI computing by examining the model development cycle across industry-scale machine learning use cases.
We present an end-to-end analysis for what and how hardware-software design and at-scale optimization can help reduce the overall carbon footprint of AI.
arXiv Detail & Related papers (2021-10-30T23:36:10Z) - Seeing biodiversity: perspectives in machine learning for wildlife
conservation [49.15793025634011]
We argue that machine learning can meet this analytic challenge to enhance our understanding, monitoring capacity, and conservation of wildlife species.
In essence, by combining new machine learning approaches with ecological domain knowledge, animal ecologists can capitalize on the abundance of data generated by modern sensor technologies.
arXiv Detail & Related papers (2021-10-25T13:40:36Z) - The Short Anthropological Guide to the Study of Ethical AI [91.3755431537592]
Short guide serves as both an introduction to AI ethics and social science and anthropological perspectives on the development of AI.
Aims to provide those unfamiliar with the field with an insight into the societal impact of AI systems and how, in turn, these systems can lead us to rethink how our world operates.
arXiv Detail & Related papers (2020-10-07T12:25:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.