論文の概要: Graceful forgetting: Memory as a process
- arxiv url: http://arxiv.org/abs/2502.11105v3
- Date: Mon, 15 Sep 2025 16:48:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-16 15:23:15.958442
- Title: Graceful forgetting: Memory as a process
- Title(参考訳): Graceful forgetting: プロセスとしてのメモリ
- Authors: Alain de Cheveigné,
- Abstract要約: 有界メモリにおける感覚入力をどのように適合させるかを説明するための合理的な枠組みが提案されている。
このフレームワークは、メモリに関する広範な知識を理解し、機能的および機械的用語におけるメモリの理解に近づけるための助けとなることを意図している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A rational framework is proposed to explain how we accommodate unbounded sensory input within bounded memory. Memory is stored as statistics organized into structures that are repeatedly summarized and compressed to make room for new input. Repeated summarization requires an intensive ongoing process guided by heuristics that help optimize the memory for future needs. Sensory input is rapidly encoded as simple statistics that are progressively elaborated into more abstract constructs. This framework differs from previous accounts of memory by its emphasis on a process that is intensive, complex, and expensive, its reliance on statistics as a representation of memory, and the use of heuristics to guide the choice of statistics at each summarization step. The framework is intended as an aid to make sense of our extensive knowledge of memory, and bring us closer to an understanding of memory in functional and mechanistic terms.
- Abstract(参考訳): 有界メモリにおける非有界感覚入力の対応法を説明するための合理的な枠組みが提案されている。
メモリは、新しい入力の余地を作るために繰り返し要約され圧縮される構造に整理された統計として格納される。
繰り返しの要約は、将来のニーズのためにメモリを最適化するのに役立つヒューリスティックスによって導かれる集中的なプロセスを必要とする。
感覚入力は、より抽象的な構成に徐々に精巧化される単純な統計として急速に符号化される。
このフレームワークは、メモリの集中的で複雑で高価であるプロセス、メモリの表現としての統計への依存、そして各要約ステップにおける統計の選択を導くためのヒューリスティックスの使用に重点を置いている。
このフレームワークは、メモリに関する広範な知識を理解し、機能的および機械的用語におけるメモリの理解に近づけるための助けとなることを意図している。
関連論文リスト
- Cognitive Memory in Large Language Models [8.059261857307881]
本稿では,Large Language Models (LLMs) における記憶機構について検討し,文脈に富む応答の重要性,幻覚の減少,効率の向上などを強調した。
メモリは、インプットプロンプト、短期記憶処理の即時コンテキスト、外部データベースや構造を介して実装された長期記憶に対応して、インプットプロンプト、短期記憶、長期記憶に分類する。
論文 参考訳(メタデータ) (2025-04-03T09:58:19Z) - LightThinker: Thinking Step-by-Step Compression [53.8069487638972]
提案するLightThinkerは,大規模言語モデルを用いて推論中の中間的思考を動的に圧縮する手法である。
人間の認知プロセスにインスパイアされたLightThinkerは、思考ステップをコンパクトな表現に圧縮し、元の推論チェーンを捨てる。
実験によると、LightThinkerは競合精度を維持しながら、ピークメモリ使用量と推論時間を短縮する。
論文 参考訳(メタデータ) (2025-02-21T16:57:22Z) - Hierarchical Working Memory and a New Magic Number [1.024113475677323]
本稿では,作業記憶のシナプス理論の枠組み内でチャンキングを行うための繰り返しニューラルネットワークモデルを提案する。
我々の研究は、認知に不可欠な脳内の情報のオンザフライ組織を理解するための、概念的で分析的な枠組みを提供する。
論文 参考訳(メタデータ) (2024-08-14T16:03:47Z) - Spatially-Aware Transformer for Embodied Agents [20.498778205143477]
本稿では,空間情報を含む空間認識変換器モデルの利用について検討する。
メモリ利用効率が向上し,様々な場所中心の下流タスクにおいて精度が向上することが実証された。
また,強化学習に基づくメモリ管理手法であるAdaptive Memory Allocatorを提案する。
論文 参考訳(メタデータ) (2024-02-23T07:46:30Z) - Memory Efficient Neural Processes via Constant Memory Attention Block [55.82269384896986]
CMANP(Constant Memory Attentive Neural Processs)は、NPの変種である。
我々は,CMANPが従来の手法よりもはるかにメモリ効率が良く,NPベンチマークで最先端の結果が得られることを示した。
論文 参考訳(メタデータ) (2023-05-23T23:10:19Z) - Sequential Memory with Temporal Predictive Coding [6.228559238589584]
時空間予測符号化 (tPC) という, PC を用いた時空間メモリモデルを提案する。
我々のtPCモデルは、生物学的に妥当なニューラル実装を用いて、シーケンシャルな入力を正確に記憶し、取得できることを示します。
論文 参考訳(メタデータ) (2023-05-19T20:03:31Z) - ABC: Attention with Bounded-memory Control [67.40631793251997]
我々は,有界メモリ制御 (ABC) を1つの抽象概念,すなわち有界メモリ制御 (ABC) に仮定できることを示した。
ABCが新たな可能性を明らかにしました。まずは、他の方法では見分けがつかないような、効率的なアテンションのバリエーションを接続します。
最後に,既存のABCアプローチからインスピレーションを得たABCの新しい事例を紹介する。
論文 参考訳(メタデータ) (2021-10-06T03:53:25Z) - Memory and attention in deep learning [19.70919701635945]
マシンのメモリ構成は避けられない。
ディープラーニングにおけるメモリモデリングの最近の進歩は、外部メモリ構築を中心に展開されている。
この論文の目的は、深層学習における記憶と注意に対する理解を深めることである。
論文 参考訳(メタデータ) (2021-07-03T09:21:13Z) - Learning to Rehearse in Long Sequence Memorization [107.14601197043308]
既存の推論タスクは、しばしば、推論中に入力内容が常にアクセス可能であるという重要な仮定を持つ。
メモリ拡張ニューラルネットワークは、人間のような書き込み読み取りメモリを導入し、1回のパスで長い入力シーケンスを圧縮し記憶する。
しかし、2つの重大な欠点がある: 1) メモリを現在の情報から継続的に更新し、必然的に初期の内容を忘れる; 2) 重要な情報を区別せず、全てのコンテンツを平等に扱う。
本稿では,履歴サンプリング装置を用いた自己教師型リハーサルによる長期記憶向上のためのリハーサルメモリを提案する。
論文 参考訳(メタデータ) (2021-06-02T11:58:30Z) - Kanerva++: extending The Kanerva Machine with differentiable, locally
block allocated latent memory [75.65949969000596]
エピソディックメモリとセマンティックメモリは、人間のメモリモデルの重要なコンポーネントです。
我々は、エピソードメモリとセマンティックメモリのギャップを埋める新しい原理ベイズメモリ割り当てスキームを開発しました。
この割り当て方式がメモリ条件画像生成の性能を向上させることを実証する。
論文 参考訳(メタデータ) (2021-02-20T18:40:40Z) - Memformer: A Memory-Augmented Transformer for Sequence Modeling [55.780849185884996]
本稿では、シーケンスモデリングのための効率的なニューラルネットワークであるMemformerを紹介する。
我々のモデルは長いシーケンスを処理する際に線形時間複雑性と一定メモリ空間複雑性を実現する。
論文 参考訳(メタデータ) (2020-10-14T09:03:36Z) - Self-Attentive Associative Memory [69.40038844695917]
我々は、個々の体験(記憶)とその発生する関係(関連記憶)の記憶を分離することを提案する。
機械学習タスクの多様性において,提案した2メモリモデルと競合する結果が得られる。
論文 参考訳(メタデータ) (2020-02-10T03:27:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。